325 research outputs found

    SP701-A-Growing and Harvesting Switchgrass for Ethanol Production in Tennessee

    Get PDF
    Switchgrass is a warm-season perennial grass native to North America. The plant can reach heights up to 10 feet with an extensive root system. Once established, switchgrass well-managed for biomass should have a productive life of 10-20 years. Within the stand, switchgrass is an extremely strong competitor. However, it is not considered an invasive plant. Switchgrass adapts well to a variety of soil and climatic conditions. It is most productive on moderately well to well-drained soils of medium fertility and a soil pH at 5.0 or above. The high cellulosic content of switchgrass makes it a favorable feedstock for ethanol production. It is anticipated that switchgrass can yield sufficient biomass to produce approximately 500 gallons of ethanol per acre. While the Tennessee Biofuels Initiative includes a demonstration plant to make ethanol from switchgrass, the market for switchgrass as an energy crop remains limited. Producers will likely need to be located within 30 to 50 miles of a cellulosic ethanol plant. Producing switchgrass for energy generally occurs under some form of contractual arrangement with the end-user. To reap potential benefits from using switchgrass for cellulosic ethanol production, the system of production must be profitable for farmers and energy producers, as well as cost effective for consumers

    LKB1/AMPK and PKA Control ABCB11 Trafficking and Polarization in Hepatocytes.

    Get PDF
    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation

    Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area

    Get PDF
    The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra-but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG-but not the pre-SMA-exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output

    A qualitative stakeholder analysis of avian influenza policy in Bangladesh

    Get PDF
    Avian influenza is a major animal and public health concern in Bangladesh. A decade after development and implementation of the first national avian influenza and human pandemic influenza preparedness and response plan in Bangladesh, a two-stage qualitative stakeholder analysis was performed in relation to the policy development process and the actual policy. This study specifically aimed to identify the future policy options to prevent and control avian influenza and other poultry-related zoonotic diseases in Bangladesh. It was recommended that the policy should be based on the One Health concept, be evidence-based, sustainable, reviewed and updated as necessary. The future policy environment that is suitable for developing and implementing these policies should take into account the following points: the need to formally engage multiple sectors, the need for clear and acceptable leadership, roles and responsibilities, and the need for a common pool of resources and provision for transferring resources. Most of these recommendations are directed towards the Government of Bangladesh. However, other sectors, including research and poultry production stakeholders, also have a major role to play to inform policy-making and actively participate in the multi-sectoral approach

    sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development

    Get PDF
    The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies

    Integrated Operational Taxonomic Units (IOTUs) in Echolocating Bats: A Bridge between Molecular and Traditional Taxonomy

    Get PDF
    Background: Nowadays, molecular techniques are widespread tools for the identification of biological entities. However, until very few years ago, their application to taxonomy provoked intense debates between traditional and molecular taxonomists. To prevent every kind of disagreement, it is essential to standardize taxonomic definitions. Along these lines, we introduced the concept of Integrated Operational Taxonomic Unit (IOTU). IOTUs come from the concept of Operational Taxonomic Unit (OTU) and paralleled the Molecular Operational Taxonomic Unit (MOTU). The latter is largely used as a standard in many molecular-based works (even if not always explicitly formalized). However, while MOTUs are assigned solely on molecular variation criteria, IOTUs are identified from patterns of molecular variation that are supported by at least one more taxonomic characteristic. Methodology/Principal Findings: We tested the use of IOTUs on the widest DNA barcoding dataset of Italian echolocating bats species ever assembled (i.e. 31 species, 209 samples). We identified 31 molecular entities, 26 of which corresponded to the morphologically assigned species, two MOTUs and three IOTUs. Interestingly, we found three IOTUs in Myotis nattereri, one of which is a newly described lineage found only in central and southern Italy. In addition, we found a level of molecular variability within four vespertilionid species deserving further analyses. According to our scheme two of them (i.e. M. bechsteinii and Plecotus auritus) should be ranked as unconfirmed candidate species (UCS). Conclusions/Significance: From a systematic point of view, IOTUs are more informative than the general concept of OTUs and the more recent MOTUs. According to information content, IOTUs are closer to species, although it is important to underline that IOTUs are not species. Overall, the use of a more precise panel of taxonomic entities increases the clarity in the systematic field and has the potential to fill the gaps between modern and traditional taxonomy

    The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies

    Get PDF
    A meeting to discuss the latest developments in the biology of sexual development of Plasmodium and transmission-control was held April 5-6, 2011, in Bethesda, MD. The meeting was sponsored by the Bill & Melinda Gates Foundation and the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID) in response to the challenge issued at the Malaria Forum in October 2007 that the malaria community should re-engage with the objective of global eradication. The consequent rebalancing of research priorities has brought to the forefront of the research agenda the essential need to reduce parasite transmission. A key component of any transmission reduction strategy must be methods to attack the parasite as it passes from man to the mosquito (and vice versa). Such methods must be rationally based on a secure understanding of transmission from the molecular-, cellular-, population- to the evolutionary-levels. The meeting represented a first attempt to draw together scientists with expertise in these multiple layers of understanding to discuss the scientific foundations and resources that will be required to provide secure progress toward the design and successful implementation of effective interventions

    Motor-Cortical Interaction in Gilles de la Tourette Syndrome

    Get PDF
    BACKGROUND: In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS
    corecore