7 research outputs found
Π ΠΎΠ»Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π΄Π΅ΠΏΠΎ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Ca2+ β Π±Π΅Π»ΠΊΠΎΠ² Stim ΠΈ Orai β Π² Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
In the process of evolution of eukaryotes has formatted a highly organized mechanism for maintaining and regulating intracellular calcium homeostasis, which is one of the most important components of cell signaling in all branches of the phylogenetic tree. Intracellular calcium controls numerous physiological processes in the cell. Ca2+ forms signals as their spatial-temporal distribution. The frequency and amplitude of calcium oscillations depends on the signal strength. Calcium signals causing long-term or short-term responses of cells. Mainly, calcium signals in lymphocytes mediate gene expression program initiation that leads to proliferation, differentiation and production of proinflammatory cytokines also activate formation of inflammasome. Therefore, calcium signals mediate immune, and inflammatory response, autoimmune reaction of lymphocytes. The main mechanism of calcium signaling in lymphocytes is store-dependent Ca2+ current. Mobilization of cellular Ca2+ in response to receptor stimulation commonly occurs through release of Ca2+ ions from intracellular Ca2+ stores or influx across the plasma membrane through calcium - selective channels. Calciumselective channels are assembled from two protein families: the Orai proteins which form the ion channel pore, and the stromal interaction molecule (STIM) proteins which function as endoplasmic reticulum calcium sensors and activators of the channel. Stim protein is a transmembrane monomer which is localized at the membrane of the endoplasmic reticulum. This molecule is a sensor Ca2+ in response to emptying store activates calciumselective channels the plasma membrane. These channels express proteins Orai which are tetramers forming inside the channel pore and act as a site Ca2+. Orai binds to Stim. Orai proteins are activated after receiving information from Stim about Store depletion. Thus, the relationship and coordination of Stim and Orai proteins provides store - dependent Ca2+ current and causes cellular functional responses. Increased Ca2+ levels induce the activation of transcription factors such as NFAT, JNK1, MEF2, CREB, and, in most cases, is a crucial factor in the all differentiation or death. In this review, the mechanism of the store-dependent Ca2+ current in lymphocytes is presented.Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠΊΠ°ΡΠΈΠΎΡ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π»ΡΡ Π²ΡΡΠΎΠΊΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·Π° Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π½Π° Π²ΡΠ΅Ρ
Π²Π΅ΡΠ²ΡΡ
ΡΠΈΠ»ΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄ΡΠ΅Π²Π°. ΠΠ½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΉ ΠΊΠ°Π»ΡΡΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΠΊΠ»Π΅ΡΠΊΠ΅, ΡΠΎΡΠΌΠΈΡΡΡ ΡΠΈΠ³Π½Π°Π»Ρ Π² Π²ΠΈΠ΄Π΅ ΠΈΡ
ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠΈΠ»Π° ΡΠΈΠ³Π½Π°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΒ ΡΠ°ΡΡΠΎΡΡ ΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΎΠ²Π½Ρ ΠΊΠ°Π»ΡΡΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ.Β ΠΠ»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ Π² Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
ΠΎΠΏΠΎΡΡΠ΅Π΄ΡΡΡ ΠΈΠ½ΠΈΡΠΈΠ°ΡΠΈΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ², ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ, ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ², ΡΠ°ΠΊΠΆΠ΅ Π°ΠΊΡΠΈΠ²ΠΈΡΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΠ»Π°ΠΌΠΌΠ°ΡΠΎΠΌ. ΠΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ ΠΎΠΏΠΎΡΡΠ΅Π΄ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡΠ½ΠΈΡΠ΅ΡΠ°, Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΎΡΠ²Π΅ΡΠΎΠ², Π°ΡΡΠΎΠΈΠΌΠΌΡΠ½Π½ΡΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ². Π ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΡΡ
ΡΠΎΠ±ΡΡΠΈΠΉ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² Π»Π΅ΠΆΠΈΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ Π΄Π΅ΠΏΠΎ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Ca2+. ΠΡΠΎ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΡΡ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π² ΠΎΡΠ²Π΅Ρ Π½Π° Π²ΡΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² ΠΈΠ· Π΄Π΅ΠΏΠΎ β ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠΈΠΊΡΠ»ΡΠΌΠ° β ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΊΠ°Π»ΡΡΠΈΠΉ-ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΊΠ°Π½Π°Π»ΠΎΠ² Π² ΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π΅. ΠΠ°Π½Π½ΡΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠΎΠΉ Π±Π΅Π»ΠΊΠΎΠ² (stromal interaction molecule) Stim ΠΈ Orai.Β ΠΠ΅Π»ΠΎΠΊ Stim ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΡΠ°Π½ΡΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΡΠΉ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΡΠ΅ΡΡΡ Π² ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π΅ ΡΠ½Π΄ΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠΈΠΊΡΠ»ΡΠΌΠ°. ΠΡΠ° ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π° ΡΠ²Π»ΡΠ΅ΡΡΡΒ ΡΠ΅Π½ΡΠΎΡΠΎΠΌ Ca2+ , Π² ΠΎΡΠ²Π΅Ρ Π½Π° ΠΎΠΏΡΡΡΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π΅ΠΏΠΎ Π°ΠΊΡΠΈΠ²ΠΈΡΡΠ΅Ρ ΠΊΠ°Π»ΡΡΠΈΠΉ-ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΊΠ°Π½Π°Π»Ρ ΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Ρ. ΠΠ°Π½Π½ΡΠ΅ ΠΊΠ°Π½Π°Π»Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡΡΡΡΒ Π±Π΅Π»ΠΊΠΈ Orai, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΡΠ΅ΡΡΠ°ΠΌΠ΅ΡΡ. ΠΠ½ΠΈ ΡΠΎΡΠΌΠΈΡΡΡΡ ΠΏΠΎΡΡ Π²Π½ΡΡΡΠΈ ΠΊΠ°Π½Π°Π»Π°, ΠΊΠΎΡΠΎΡΠ°Ρ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°ΠΉΡΠ°, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠ΅Π³ΠΎ Ca2+. ΠΠ΅Π»ΠΊΠΈ Orai Π°ΠΊΡΠΈΠ²ΠΈΡΡΡΡΡΡ ΡΠΎΠ³Π΄Π°,Β ΠΊΠΎΠ³Π΄Π° Ρ Π½ΠΈΠΌΠΈΒ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΡΡ Π±Π΅Π»ΠΊΠΈ, ΡΠΈΠ³Π½Π°Π»ΠΈΠ·ΠΈΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π΄Π΅ΠΏΠΎ ΠΈΡΡΠΎΡΠ΅Π½ΠΎ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² Stim ΠΈ Orai ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π΄Π΅ΠΏΠΎ-Π·Π°Π²ΠΈΡΠΈΠΌΡΠΉ ΡΠΎΠΊ Ca2+ ΠΈ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ²Π΅ΡΡ ΠΊΠ»Π΅ΡΠΊΠΈ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ Ca2+Β ΠΈΠ½Π΄ΡΡΠΈΡΡΠ΅Ρ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΡΒ ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΡΡΠ°Π½ΡΠΊΡΠΈΠΏΡΠΈΠΈ, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ NFAT, JNK1, MEF2, CREB, ΠΈ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π²Β ΡΠ²Π»ΡΠ΅ΡΡΡΒ ΡΠ΅ΡΠ°ΡΡΠΈΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈΠ»ΠΈ Π³ΠΈΠ±Π΅Π»ΠΈ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΌ ΠΎΠ±Π·ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΒ Π΄Π΅ΠΏΠΎ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Ca2+Β Π² Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
The role of proteins Stim and Orai as molecular components of the store-dependent current Ca2+ in lymphocytes
In the process of evolution of eukaryotes has formatted a highly organized mechanism for maintaining and regulating intracellular calcium homeostasis, which is one of the most important components of cell signaling in all branches of the phylogenetic tree. Intracellular calcium controls numerous physiological processes in the cell. Ca2+ forms signals as their spatial-temporal distribution. The frequency and amplitude of calcium oscillations depends on the signal strength. Calcium signals causing long-term or short-term responses of cells. Mainly, calcium signals in lymphocytes mediate gene expression program initiation that leads to proliferation, differentiation and production of proinflammatory cytokines also activate formation of inflammasome. Therefore, calcium signals mediate immune, and inflammatory response, autoimmune reaction of lymphocytes. The main mechanism of calcium signaling in lymphocytes is store-dependent Ca2+ current. Mobilization of cellular Ca2+ in response to receptor stimulation commonly occurs through release of Ca2+ ions from intracellular Ca2+ stores or influx across the plasma membrane through calcium - selective channels. Calciumselective channels are assembled from two protein families: the Orai proteins which form the ion channel pore, and the stromal interaction molecule (STIM) proteins which function as endoplasmic reticulum calcium sensors and activators of the channel. Stim protein is a transmembrane monomer which is localized at the membrane of the endoplasmic reticulum. This molecule is a sensor Ca2+ in response to emptying store activates calciumselective channels the plasma membrane. These channels express proteins Orai which are tetramers forming inside the channel pore and act as a site Ca2+. Orai binds to Stim. Orai proteins are activated after receiving information from Stim about Store depletion. Thus, the relationship and coordination of Stim and Orai proteins provides store - dependent Ca2+ current and causes cellular functional responses. Increased Ca2+ levels induce the activation of transcription factors such as NFAT, JNK1, MEF2, CREB, and, in most cases, is a crucial factor in the all differentiation or death. In this review, the mechanism of the store-dependent Ca2+ current in lymphocytes is presented
Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode
Mediatorless, electrochemically driven, redox transformations of T1 (type 1) and T2 copper sites in Trametes hirsuta laccase were studied by cyclic voltammetry and spectroelectrochemical redox titrations using bare gold electrode. DET (direct electron transfer) between the electrode and the enzyme was observed under anaerobic conditions. From analysis of experimental data it is concluded that the T2 copper site is in DET contact with gold. It was found that electron transfer between the gold surface and the T1 copper site progresses through the T2 copper site. From EPR measurements and electrochemical data it is proposed that the redox potential of the T2 site for high-potential βblueβ laccase is equal to about 400Β mV versus NHE (normal hydrogen electrode) at pHΒ 6.5. The hypothesis that the redox potentials of the T2 copper sites in low- and high-potential laccases/oxidases from totally different sources might be very similar, i.e. approx.Β 400Β mV, is discussed