70 research outputs found

    Dansgaard-Oeschger events: tipping points in the climate system

    Get PDF
    Dansgaard-Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the paleoclimatic signal. In this work, we assess the bimodality of the system reconstructing the topology of the multi--dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard-Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets...), either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard-Oeschger with changing boundary conditions, and with the presence of a bifurcation point.Comment: Final typeset version freely available at: Clim. Past, 9, 323-333, 2013 www.clim-past.net/9/323/2013/ doi:10.5194/cp-9-323-201

    A reappraisal of the thermal growing season length across Europe

    Get PDF
    Growing season length (GSL) indices derived from surface air temperature are frequently used in climate monitoring applications. The widely used Expert Team on Climate Change Detection and Indices (ETCCDI) definition aims to give a broadly applicable measure of the GSL that is indicative of the duration of the mild part of the year. In this paper long‐term trends in that index are compared with an alternative measure calculated using a time series decomposition technique (empirical ensemble mode decomposition [EEMD]). It is demonstrated that the ETCCDI index departs from the mild‐season definition as its start and end dates are determined by temperature events operating within the synoptic timescale; this raises the inter‐annual variance of the index. The EEMD‐derived index provides a less noisy and more realistic index of the GSL by filtering out the synoptic‐scale variance and capturing the annual‐cycle and longer timescale variability. Long‐term trends in the GSL are comparable between the two indices, with an average increase in length of around 5 days/decade observed for the period 1965–2016. However, the results using the EEMD index display a more coherent picture of significant trends than has been previously observed. Furthermore, the EEMD‐derived growing season parameters are more closely related to variations in seasonal‐mean hemispheric‐scale atmospheric circulation patterns, with around 57% of the inter‐annual variation in the start of the growing season being connected to the North Atlantic Oscillation and East Atlantic patterns, and around 55% of variation in the end of the growing season being associated with East Atlantic/west Russia‐type patterns

    Surface wind over Europe: Data and variability

    Get PDF
    This work improves the characterization and knowledge of the surface wind climatology over Europe with the development of an observational database with unprecedented quality control (QC), the European Surface Wind Observational database (EuSWiO). EuSWiO includes more than 3,829 stations with sub-daily resolution for wind speed and direction, with a number of sites spanning the period of 1880–2017, a few hundred time series starting in the 1930s and relatively good spatial coverage since the 1970s. The creation of EuSWiO entails the merging of eight different data sets and its submission to a common QC. About 5% of the total observations were flagged, correcting a great part of the extreme and unrealistic values, which have a discernible impact on the statistics of the database. The daily wind variability was characterized by means of a classification technique, identifying 11 independent subregions with distinct temporal wind variability over the 2000–2015 period. Significant decreases in the wind speed during this period are found in five regions, whereas two regions show increases. Most regions allow for extending the analysis to earlier decades. Caution in interpreting long-term trends is needed as wind speed data have not been homogenized. Nevertheless, decreases in the wind speed since the 1980s can be noticed in most of the regions. This work contributes to a deeper understanding of the temporal and spatial surface wind variability in Europe. It will allow from meteorological to climate and climate change studies, including potential applications to the analyses of extreme events, wind power assessments or the evaluation of reanalysis or model-data comparison exercises at continental scales

    Linking Unserved Energy to Weather Regimes

    Get PDF
    The integration of renewable energy sources into power systems is expected to increase significantly in the coming decades. This can result in critical situations related to the strong variability in space and time of weather patterns. During these critical situations the power system experiences a structural shortage of energy across multiple time steps and regions, leading to Energy Not Served (ENS) events. Our research explores the relationship between six weather regimes that describe the large scale atmospheric flow and ENS events in Europe by simulating future power systems. Our results indicate that most regions have a specific weather regime that leads to the highest number of ENS events. However, ENS events can still occur during any weather regime, but with a lower probability. In particular, our findings show that ENS events in western and central European countries often coincide with either the positive Scandinavian Blocking (SB+), characterised by cold air penetrating Europe under calm weather conditions from north-eastern regions, or North Atlantic Oscillation (NAO+) weather regime, characterised by westerly flow and cold air in the southern half of Europe. Additionally, we found that the relative impact of one of these regimes reaches a peak 10 days before ENS events in these countries. In Scandinavian and Baltic countries, on the other hand, our results indicate that the relative prevalence of the negative Atlantic Ridge (AR-) weather regime is higher during and leading up to the ENS event.Comment: Rogier H. Wuijts and Laurens P. Stoop contributed equally to this wor

    Building long homogeneous temperature series across Europe: a new approach for the blending of neighboring series

    Get PDF
    Long and homogeneous series are a necessary requirement for reliable climate analysis. Relocation of measuring equipment from one station to another, such as from the city center to a rural area or a nearby airport, is one of the causes of discontinuities in these long series which may affect trend estimates. In this paper an updated procedure for the composition of long series, by combining data from nearby stations, is introduced. It couples an evolution of the blending procedure already implemented within the European Climate Assessment and Dataset (which combines data from stations no more than 12.5 km apart from each other) with a duplicate removal, alongside the quantile matching homogenization procedure. The ECA&D contains approximately 3000 homogenized series for each temperature variable prior to the blending procedure, around 820 of these are longer than 60 years; the process of blending increases the number of long series to more than 900. Three case studies illustrate the effects of the homogenization on single blended series, showing the effectiveness of separate adjustments on extreme and mean values (Geneva), on cases where blending is complex (Rheinstetten) and on series which are completed by adding relevant portions of GTS synoptic data (Siauliai). Finally, a trend assessment on the whole European continent reveals the removal of negative and very large trends, demonstrating a stronger spatial consistency. The new blended and homogenized data-set will allow a more reliable use of temperature series for indices calculation and for the calculation of gridded data-sets, and will be available for users on www.ecad.eu

    A multidecadal assessment of climate indices over Europe

    Get PDF
    Monitoring and management of several environmental and socioeconomic sectors require climate data that can be summarized using a set of standard and meaningful climate metrics. This study describes a newly developed gridded dataset for the whole of Europe, which employed a set of 125 climate indices spanning different periods based on data availability, but mainly 1950–2017 and 1979–2017. This dataset comprehensively summarizes climate variability in Europe for a wide range of climate variables and conditions, including air temperature, precipitation, biometeorology, aridity, continentality, drought, amongst others. Climate indices were computed at different temporal scales (i.e. monthly, seasonal and annual) and mapped at a grid interval of 0.25°. We intend to update these indices on an annual basis. This dataset is freely available to research and end-user communities
    • 

    corecore