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Hydrological drought results from a period of abnor-
mally low precipitation, sometimes exacerbated by addi-
tional evapotranspiration (ET), and its occurrence can be 
apparent in reduced river discharge, soil moisture, and/or 
groundwater storage, depending on season and duration 
of the event. Although drought could be identified in any 
of these variables, it is also commonly estimated using 
drought indices derived from meteorological observations 
because these records are often longer, more widespread, 
and more readily available. 

Common drought indices (Trenberth et al. 2014) are 
derived solely from precipitation (Standardized Precipita-
tion Index, SPI; Guttman 1999) or the difference between 
precipitation and potential ET (Standardized Precipitation 
Evapotranspiration Index, SPEI; Vicente-Serrano et al. 
2010). Alternatively, an account of soil moisture can be 
kept to allow an estimate of actual ET to be used, together 
with precipitation, to obtain the Palmer Drought Sever-
ity Index (PDSI; Palmer 1965) and a variant called the 
self-calibrating PDSI (scPDSI; Wells et al. 2004). These 
are all relative indices, describing the severity of drought 
by comparison with the variations experienced during a 
reference period. 

Recent studies using various drought indices have 
produced apparently conflicting results of how drought 
is changing under climate change (Trenberth et al. 2014). 
The discrepancies arise from different choices of drought 
index, precipitation dataset, and potential ET param-
eterization and the uncertainties therein. There is no 
consensus about which approach is most suitable. Here 
the physically based Penman–Monteith potential ET is 
used, instead of a potential ET estimate based only on air 
temperature, along with the scPDSI, which aims 
to be more comparable between diverse climate 
regions than the “traditional” PDSI (Wells et 
al. 2004). As with other indices, uncertainties 
in the input variables transfer through to the 
scPDSI. The baseline period, used to define 
and calibrate the scPDSI moisture categories, 
is the complete 1901–2014 period, making sure 
that “extreme” droughts (or pluvials) relate to 
events that do not occur more frequently than 
in approximately 2% of the months. This affects 
direct comparison with other hydrological cycle 
variables in Plate 2.1 which use a more recent 
climatology period.

Globally, the year 2014 was not particularly 
dry (compare Plate 2.1 hydrological cycle vari-

ables). The scPDSI metric (updated from van der Schrier 
et al. 2013a, using precipitation and potential ET from 
the CRU TS3.22 dataset of Harris et al. 2014) shows that 
only about 5% of the global land area saw severe (scPDSI 
< –3, Palmer 1965) drought conditions and about 1% saw 
extreme (scPDSI < –4) drought conditions (Fig. SB2.3). 
The area under drought, whether moderate, severe, or 
extreme, has decreased since the mid-1980s using this 
metric, and 2014 drought areas were smaller than the cli-
matological average (for either the 1961–90 or 1981–2010 
periods). However, this trend is not universal across all 
studies, depending especially on the precipitation dataset 
and the choice of reference period (Trenberth et al. 2014). 

Despite the small global area experiencing drought in 
2014, severe and extensive droughts occurred in some 
regions such as eastern Australia (Fig. SB2.4). This drought 
was still severe but has ameliorated in some places since 
2013. 

Parts of Central America (Guatemala, El Salvador, and 
Nicaragua) were in significant drought in 2014, with little 
change from 2013 (Fig. SB2.4). The remainder of Central 
America was very wet. Drought conditions were prevalent 
in tropical South America, particularly in coastal Peru, the 
western part of the Amazon basin, Uruguay, and parts of 
southern Brazil. Drought in the latter regions became 
much worse in 2014 and adverse impacts on surface 
water resources around São Paolo were widely reported 
in the media.

An extensive region with drought conditions was 
evident from Iran stretching into India. Dry conditions 
over India in 2014 were less severe than in 2013, while 
those over Pakistan became worse. Farther east in Asia, 

Fig. SB2.3. Percentage of global land area with scPDSI indicating 
moderate (< –2), severe (< –3) and extreme (< –4) drought for 
each month for 1950–2014. Inset: each month of 2014.
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the scPDSI indicated the development of a moderate or 
severe drought in southeastern China in 2014.

Approximately 20% of southern Africa (below 12°S) 
experienced moderate drought , with more severe 
drought in localized areas such as South Africa and Mada-
gascar. This area is slowly recovering from a dry spell that 
began in 2010; since that time the area with extremely dry 

conditions has steadily decreased. A large area in central 
Africa between Lake Chad and the equator also had 
prominent drought conditions, appearing more severe 
than the situation in 2013.

Drought conditions in parts of western North 
America have eased since July 2012 when nearly half 
of the region was under moderate drought conditions. 
This view of western North American drought is less 
extreme than that indicated by the U.S. Drought Monitor 
(http://droughtmonitor.unl.edu), which indicated extreme 
drought conditions in parts of California throughout 2014. 
The differences arise from different drought indices and 
precipitation data.

Much of western and central Europe was wet in 2014, 
but potential ET was also above average over most of 
Europe. Together these resulted in a complex pattern 
of drought, with some local severe droughts indicated in 
parts of central Europe. 

Summarizing, the global area under drought conditions 
was low in 2014. A few regions have seen worsening 
droughts but drought was alleviated in more regions. 
Nevertheless, the remarkably small global area with 
drought conditions contrasts with the high global tem-
peratures for 2014 [see section 2b(1)].

Fig. SB2.4. Mean scPDSI for (upper) 2014 and (lower) 
the difference between 2014 and 2013. Droughts are 
indicated by negative values (yellow–red), wet anoma-
lies by positive values (pale–dark blue). No calculation 
is made where a drought index has no meaning (gray 
areas: ice sheets or deserts with approximately zero 
precipitation).

1990–95 protracted El Niño; see Gergis and Fowler 
2009).

The SOI trace since 2009 highlights the shift from 
El Niño to strong La Niña conditions around mid-
2010, continuation as a protracted La Niña (with cold 
SST anomalies in the Niño4 region) until its demise 
in early 2012 and then near-normal conditions until 
early 2013. Mainly positive (La Niña-type) values 
followed until a swing to negative (El Niño-type) con-
ditions since early 2014 (Fig. 2.25b; with warm SST 
anomalies in the Niño4 region). Major El Niño and La 
Niña events can be near-global in their influence on 
world weather patterns, owing to ocean–atmosphere 
interactions across the Indo–Pacific region with tele-
connections to higher latitudes in both hemispheres. 
Protracted El Niño and La Niña episodes tend to be 
more regional in their impacts (Allan and D’Arrigo 

1999). For example, periods of persistent drought 
(widespread f looding) in Queensland, Australia, 
often occur during protracted El Niño (La Niña) 
episodes. The dry 2014 in much of Queensland (e.g., 
Plate 2.1 hydrological cycle variables) ref lects the 
marginal El Niño-like conditions.

The SOI is arguably the most global mode of sea 
level pressure variability. Other regionally notable 
modes are shown in Fig. 2.25c–j, and illustrate other 
important characteristics of the circulation. Northern 
Hemisphere winters (December–February) since 
2010/11 have experienced contrasting North Atlantic 
Oscillation (NAO)/Arctic Oscillation (AO) condi-
tions (Fig. 2.25c,d,g,h). In contrast, in the Southern 
Hemisphere, the Antarctic Oscillation (AAO) did not 
exhibit strong features during either of the austral 
summers of 2013/14 and 2014/15 (Fig. 2.25e,f).

S31JULY 2015STATE OF THE CLIMATE IN 2014 |


