12 research outputs found

    Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density

    Get PDF
    In this study, we investigated some bone parameters (bone mineral content, bone mineral density, skeleton area) in growing rats fed with a high fat diet. Correlations between bone and body composition parameters are reported. Two groups of Wistar male rats (35 days old, body mass 80 ± 6 g) were used. Water and food were given "ad libitum" during 10 weeks. Sixteen rats (L) were given a lipid enriched diet and were compared to 16 rats (S) fed with a standard diet. Body composition and bone parameters were assessed using DXA. Results indicated that L rats had lower body mass, lean body mass; fat mass was not different between the two groups. Bone mineral content, bone mineral density, skeleton area of L rats were lower compared with S rats. Significant correlations were noted between body composition, adiponectin and bone parameters. High fat diet intake during the growing period has deleterious effects on bone parameters in rats. This study confirms in growing rats that a high fat diet is pathogenic, including bone metabolism

    Control Architecture Concepts and Properties of an Ontology Devoted to Exchanges in Mobile Robotics

    Get PDF
    National audienceA specific ontology is proposed in the scope of the development of a platform devoted to exchanges between academics and industrials of the robotic domain. This paper presents the tools used for knowledge elicitation, the concepts and properties linked with control architecture, the use of the resulting ontology for description of some scenarios and the tracks for the development of a domain specific language grounded on the ontology. Knowledge elicitation is performed in web ontology language thanks to Protégé ontology editor. The ontology is structured as a set of modules organized around a kernel. Modules addressing systems, information, robot and mission include concepts and properties for control architecture description. The expressivity of the ontology is demonstrated describing architectures for a set of scenarios; urban robotic scenario, air-ground scenario, landmark search scenario and military unmanned aerial vehicles scenario. Finally some tracks for the use of the ontology for developing a domain specific language are given

    IMPACT OF DIET, EXERCISE AND DIET COMBINED WITH EXERCISE PROGRAMS ON PLASMA LIPOPROTEIN AND ADIPONECTIN LEVELS IN OBESE GIRLS

    No full text
    We studied the effect of three programs, diet restriction (D), individualized exercise training (E) at the maximal lipid oxidation point (LIPOXmax) and diet combined with exercise (D+E), on body mass, plasma lipoprotein and adiponectin levels in obese girls. Eighteen obese adolescents girls aged 12-14 years were studied. A longitudinal intervention was carried out, consisting of a two-month diet (D; -500 kcal·day-1), of individualized exercise (E; 4 days/week, 90 min·day-1) and of diet combined with exercise (D+E). Body mass, body mass index (BMI), body fat mass, waist circumference, substrate crossover point, LIPOXmax point, homeostasis model assessment (HOMA-IR) index, fasting levels of lipids and circulatory adiponectin, were measured in all subjects before and after the program. In subjects of the D+E group, body mass, BMI, body fat mass, waist circumference, HOMA-IR, low-density lipoprotein cholesterol (LDL-C) and total cholesterol / high-density lipoprotein cholesterol (TC/HDL-C) ratio were significantly lower, and HDL-C and adiponectin were higher after the program than that of subjects in the D or E groups. Diet/exercise improved the ability to oxidize lipids during exercise (crossover point: + 18.5 ± 3.4 of % Wmax; p < 0.01 and fat oxidation rate at LIPOXmax: + 89.7 ± 19.7 mg·min-1; p < 0.01). In the D+E group, significant correlations were found between changes in body mass and adiponectin and between changes in the TC/HDL-C ratio and LIPOXmax. These findings show that the combined program of diet restriction and individualized exercise training at the LIPOXmax point is necessary to simultaneously improve body mass loss, adiponectin levels, as well as metabolic parameters, in obese girl

    Treatment of Metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial

    Get PDF
    BACKGROUND: The recommended dietary allowance (RDA) for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3) for the protein intake (PI) needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. METHODS: Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m(2)) with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21) controlled for nutrition (energy balance of −500 kcal/day) and physical activity (3.5 hours/day). Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day) and High-PI (HPI: 1.2 g/kg/day). Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. RESULTS: At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p < 0.05), whereas albuminemia remained stable in HPI. CONCLUSION: During the treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis

    Urinary Interleukin-8 is a biomarker of stress in emergency physicians, especially with advancing age: The JOBSTRESS* randomized trial

    Get PDF
    BACKGROUND: Emergency physicians are exposed to greater stress during a 24-hour shift (24 hS) than a 14-hour night shift (14 hS), with an impact lasting several days. Interleukin-8 (IL-8) is postulated to be a chronic stress biomarker. However, no studies have tracked IL-8 over several shifts or used it for monitoring short-term residual stress. The IL-8 response to the shifts may also increase with age. Conveniently, IL-8 can be measured non-intrusively from urine. METHODS: We conducted a shifts-randomized trial comparing 17 emergency physicians’ urinary IL-8 levels during a 24 hS, a 14 hS, and a control day (clerical work on return from leave). Mean levels of IL-8 were compared using a Wilcoxon matched-pairs test. Independent associations of key factors including shifts, stress, and age with IL-8 levels were further assessed in a multivariable generalized estimating equations model. RESULTS: Mean urinary IL-8 levels almost doubled during and after a 24 hS compared with a 14 hS or a control day. Furthermore, IL-8 levels failed to return to control values at the end of the third day after the shift despite a rest day following the 24 hS. In the multivariable model, engaging in a 24 hS, self-reported stress, and age were independently associated with higher IL-8 levels. A 24 hS significantly increased IL-8 levels by 1.9 ng (p = .007). Similarly, for every unit increase in self-reported stress, there was a 0.11 ng increase in IL-8 levels (p = .003); and for every one year advance in age of physicians, IL-8 levels also increased by 0.11 ng (p = .018). CONCLUSION: The 24 hS generated a prolonged response of the immune system. Urinary IL-8 was a strong biomarker of stress under intensive and prolonged demands, both acutely and over time. Because elevated IL-8 levels are associated with cardiovascular disease and negative psychological consequences, we suggest that emergency physicians limit their exposure to 24 hS, especially with advancing age

    Cardiovascular risk of adipokines: A review

    Get PDF
    Over the last two decades, the understanding of adipose tissue has undergone radical change. The perception has evolved from an inert energy storage tissue to that of an active endocrine organ. Adipose tissue releases a cluster of active molecules named adipokines. The severity of obesity-related diseases does not necessarily correlate with the extent of body fat accumulation but is closely related to body fat distribution, particularly to visceral localization. There is a distinction between the metabolic function of central obesity (visceral abdominal) and peripheral obesity (subcutaneous) in the production of adipokines. Visceral fat accumulation, linked with levels of some adipokines, induces chronic inflammation and metabolic disorders, including glucose intolerance, hyperlipidaemia, and arterial hypertension. Together, these conditions contribute to a diagnosis of metabolic syndrome, directly associated with the onset of cardiovascular disease. If it is well known that adipokines contribute to the inflammatory profile and appetite regulation, this review is novel in synthesising the current state of knowledge of the role of visceral adipose tissue and its secretion of adipokines in cardiovascular risk

    Control Architecture Concepts and Properties of an Ontology Devoted to Exchanges in Mobile Robotics

    No full text
    National audienceA specific ontology is proposed in the scope of the development of a platform devoted to exchanges between academics and industrials of the robotic domain. This paper presents the tools used for knowledge elicitation, the concepts and properties linked with control architecture, the use of the resulting ontology for description of some scenarios and the tracks for the development of a domain specific language grounded on the ontology. Knowledge elicitation is performed in web ontology language thanks to Protégé ontology editor. The ontology is structured as a set of modules organized around a kernel. Modules addressing systems, information, robot and mission include concepts and properties for control architecture description. The expressivity of the ontology is demonstrated describing architectures for a set of scenarios; urban robotic scenario, air-ground scenario, landmark search scenario and military unmanned aerial vehicles scenario. Finally some tracks for the use of the ontology for developing a domain specific language are given

    Control Architecture Concepts and Properties of an Ontology Devoted to Exchanges in Mobile Robotics

    Get PDF
    A specific ontology is proposed in the scope of the development of a platform devoted to exchanges between academics and industrials of the robotic domain. This paper presents the tools used for knowledge elicitation, the concepts and properties linked with control architecture, the use of the resulting ontology for description of some scenarios and the tracks for the development of a domain specific language grounded on the ontology. Knowledge elicitation is performed in web ontology language thanks to Protégé ontology editor. The ontology is structured as a set of modules organized around a kernel. Modules addressing systems, information, robot and mission include concepts and properties for control architecture description. The expressivity of the ontology is demonstrated describing architectures for a set of scenarios; urban robotic scenario, air-ground scenario, landmark search scenario and military unmanned aerial vehicles scenario. Finally some tracks for the use of the ontology for developing a domain specific language are given

    Diurnal, synoptic and seasonal variability of atmospheric CO<sub>2</sub> in the Paris megacity area

    No full text
    International audienceMost of the global fossil fuel CO2 emissions arise out of urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010–2011, the first atmospheric in-situ CO2 measurement network for Paris, the capital of France, has been operated with the aim of monitoring the regional atmospheric impact of the emissions out coming from this megacity. Five stations sampled air along a northeast-southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (TRN and MON), two are peri-urban (GON and GIF) and one is urban (EIF, located on top of the Eiffel tower). In this study, we analyze the diurnal, synoptic and seasonal variability of the in-situ CO2 measurements over nearly one year (8 August 2010–13 July 2011). We compare these datasets with remote CO2 measurements made at Mace Head (MHD) on the Atlantic coast of Ireland, and support our analysis with atmospheric boundary layer height (ABLH) observations made in the centre of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle, and the proximity to urban CO2 emissions. Differences of several ÎŒmol mol−1 (ppm) can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly traffic, residential and commercial heating), the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two elevated sites (EIF and TRN) show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends on the time of the day and on the season, ranging from a few tenths of ppm during daytime to several ppm during nighttime. The CO2 seasonal cycle inferred from monthly means at our regional sites are driven by the biospheric and anthropogenic CO2 flux seasonal cycles, by the ABLH seasonal cycle and also by synoptic variations. Gradients of several ppm are observed between the rural and peri-urban stations, mostly from the influence of urban emissions that are in the footprint of the peri-urban station. The seasonal cycle observed at the urban station (EIF) is specific and very sensitive to the ABLH cycle. At both the diurnal and the seasonal scales, noticeable differences of several ppm can be observed between the measurements made at regional rural stations and the remote measurements made at MHD, that are shown not to define background concentrations appropriately for quantifying the regional atmospheric impact of urban CO2 emissions. For wind speeds less than 3 m s−1, the accumulation of the local CO2 emissions in the urban atmosphere forms a dome of several tens of ppm at the peri-urban stations, mostly under the influence of relatively local emissions including those from the Charles-De-Gaulle (CDG) airport facility and from aircrafts in flight. When wind speed increases, ventilation transforms the CO2 dome into a plume. Higher CO2 background concentrations of several ppm are advected from the remote Benelux-Ruhr and London regions, impacting concentrations at the five stations of the network even at wind speeds higher than 9 m s−1. For wind speeds ranging between 3 and 8 m s−1, the impact of Paris emissions can be detected in the peri-urban stations when they are downwind of the city, while the rural stations often seem disconnected from the city emission plume. As a conclusion, our study highlights a high sensitivity of the stations to wind speed and direction, to their distance from the city, but also to the ABLH cycle depending on their elevation. We learn some lessons regarding the design of an urban CO2 network: 1/ careful attention should be paid to properly setting background sites that will be representative of the different wind sectors; 2/ the downwind stations should as much as possible be positioned symmetrically in relation to the city centre, at the peri-urban/rural border; 3/ the stations should be installed at ventilated sites (away from strong local sources) and the air inlet set-up above the building or biospheric canopy layer, whichever is the greatest; and 4/ high resolution wind information should be available with the CO2 measurements

    Diurnal, synoptic and seasonal variability of atmospheric co&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; in the paris megacity area

    No full text
    Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010-2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast-southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Trainou-TRN; Montge-en-Goele-MON), two are peri-urban (Gonesse - GON; Gif-sur-Yvette - GIF) and one is urban (EIF, located on top of the Eiffel Tower). In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010-13 July 2011). We compare these datasets with remote CO2 measurements made at Mace Head (MHD) on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH) observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several mu mol mol(-1) (ppm) can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic), the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN) show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends on the time of the day and on the season, ranging from a few tenths of ppm during daytime to several ppm during nighttime. The CO2 seasonal cycle inferred from monthly means at our regional sites is driven by the biospheric and anthropogenic CO2 flux seasonal cycles, the ABLH seasonal cycle and also synoptic variations. Enhancements of several ppm are observed at peri-urban stations compared to rural ones, mostly from the influence of urban emissions that are in the footprint of the peri-urban station. The seasonal cycle observed at the urban station (EIF) is specific and very sensitive to the ABLH cycle. At both the diurnal and the seasonal scales, noticeable differences of several ppm are observed between the measurements made at regional rural stations and the remote measurements made at MHD, that are shown not to define background concentrations appropriately for quantifying the regional (similar to 100 km) atmospheric impact of urban CO2 emissions. For wind speeds less than 3m s(-1), the accumulation of local CO2 emissions in the urban atmosphere forms a dome of several tens of ppm at the peri-urban stations, mostly under the influence of relatively local emissions including those from the Charles de Gaulle (CDG) Airport facility and from aircraft in flight. When wind speed increases, ventilation transforms the CO2 dome into a plume. Higher CO2 background concentrations of several ppm are advected from the remote Benelux-Ruhr and London regions, impacting concentrations at the five stations of the network even at wind speeds higher than 9m s(-1). For wind speeds ranging between 3 and 8m s(-1), the impact of Paris emissions can be detected in the peri-urban stations when they are downwind of the city, while the rural stations often seem disconnected from the city emission plume. As a conclusion, our study highlights a high sensitivity of the stations to wind speed and direction, to their distance from the city, but also to the ABLH cycle depending on their elevation. We learn some lessons regarding the design of an urban CO2 network: (1) careful attention should be paid to properly setting regional (similar to 100 km) background sites that will be representative of the different wind sectors; (2) the downwind stations should be positioned as symmetrically as possible in relation to the city center, at the peri-urban/rural border; (3) the stations should be installed at ventilated sites (away from strong local sources) and the air inlet set up above the building or biospheric canopy layer, whichever is the highest; and (4) high-resolution wind information should be available with the CO2 measurements
    corecore