38 research outputs found

    Characterizing uncertainties in the ESA-CCI land cover map of the epoch 2010 and their impacts on MPI-ESM climate simulations

    Get PDF
    Limitations of mapping land surface properties and their conversion into climate model boundary conditions are major sources of uncertainty in climate simulations. In this paper, the range of the largest possible uncertainty in satellite-derived land cover (LC) map is estimated and its impact on climate simulations is quantified with the Earth System Model of the Max-Planck Institute for Meteorology utilizing prescribed sea surface temperature and sea ice. Two types of uncertainty in the LC map are addressed: (i) uncertainty due to classification algorithm of spectral reflectance into LC classes, and (ii) uncertainty due to conversion of LC classes into the climate model vegetation distribution. For forest cover, each of them is about the same order of magnitude as the uncertainty range in recent observations (∼± 700 Mha). Superposing two sources of uncertainty results in LC maps that feature the range of vegetation deviation that is about the same order of magnitude as the recent (since year 1700) forest loss due to agriculture (forest cover uncertainty range ∼± 1700 Mha). These uncertainties in vegetation distribution lead to noticeable variations in near-surface climate variables, local, regional, and global climate forcing. Temperature does not show significant uncertainty in global mean, but rather exhibits regional deviations with an opposite response to LC uncertainty that compensate each other in the global mean (e.g., albedo feedback controls temperature in boreal North America resulting in cooling (warming) with decrease (increase) of vegetation while evaporative cooling controls temperature in South America and sub-Saharan Africa resulting in cooling (warming) with increase (decrease) of vegetation). Large-scale circulation is also affected by the LC uncertainty, and consequently precipitation pattern as well. It is demonstrated that precipitation uncertainty in the monsoonal regions are about the same order of magnitude as in previous studies with idealized perturbations of vegetation. These findings indicate that the range of uncertainty in satellite-derived vegetation maps for climate models is about the same order of magnitude as the uncertainty in recent observations of forest cover or as the forest lost due to agriculture. Consequently, climate simulations have a similar range of uncertainty in variables representing near-surface climate as the observed climate change due to land use. Hence, more accurate methods are needed for mapping and converting LC properties into model vegetation in order to increase reliability of climate model simulations. © 2018, The Author(s)

    Assessment of spatio-temporal landscape changes from VHR images in three different permafrost areas in the western Russian Arctic

    Get PDF
    Our study highlights the usefulness of very high resolution (VHR) images to detect various types of disturbances over permafrost areas using three example regions in different permafrost zones. The study focuses on detecting subtle changes in land cover classes, thermokarst water bodies, river dynamics, retrogressive thaw slumps (RTS) and infrastructure in the Yamal Peninsula, Urengoy and Pechora regions. Very high-resolution optical imagery (sub-meter) derived from WorldView, QuickBird and GeoEye in conjunction with declassified Corona images were involved in the analyses. The comparison of very high-resolution images acquired in 2003/2004 and 2016/2017 indicates a pronounced increase in the extent of tundra and a slight increase of land covered by water. The number of water bodies increased in all three regions, especially in discontinuous permafrost, where 14.86 of new lakes and ponds were initiated between 2003 and 2017. The analysis of the evolution of two river channels in Yamal and Urengoy indicates the dominance of erosion during the last two decades. An increase of both rivers’ lengths and a significant widening of the river channels were also observed. The number and total surface of RTS in the Yamal Peninsula strongly increased between 2004 and 2016. A mean annual headwall retreat rate of 1.86 m/year was calculated. Extensive networks of infrastructure occurred in the Yamal Peninsula in the last two decades, stimulating the initiation of new thermokarst features. The significant warming and seasonal variations of the hydrologic cycle, in particular, increased snow water equivalent acted in favor of deepening of the active layer; thus, an increasing number of thermokarst lake formations. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Biophysics and vegetation cover change: A process-based evaluation framework for confronting land surface models with satellite observations

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordLand use and land cover change (LULCC) alter the biophysical properties of the Earth's surface. The associated changes in vegetation cover can perturb the local surface energy balance, which in turn can affect the local climate. The sign and magnitude of this change in climate depends on the specific vegetation transition, its timing and its location, as well as on the background climate. Land surface models (LSMs) can be used to simulate such land-climate interactions and study their impact in past and future climates, but their capacity to model biophysical effects accurately across the globe remain unclear due to the complexity of the phenomena. Here we present a framework to evaluate the performance of such models with respect to a dedicated dataset derived from satellite remote sensing observations. Idealized simulations from four LSMs (JULES, ORCHIDEE, JSBACH and CLM) are combined with satellite observations to analyse the changes in radiative and turbulent fluxes caused by 15 specific vegetation cover transitions across geographic, seasonal and climatic gradients. The seasonal variation in net radiation associated with land cover change is the process that models capture best, whereas LSMs perform poorly when simulating spatial and climatic gradients of variation in latent, sensible and ground heat fluxes induced by land cover transitions. We expect that this analysis will help identify model limitations and prioritize efforts in model development as well as inform where consensus between model and observations is already met, ultimately helping to improve the robustness and consistency of model simulations to better inform land-based mitigation and adaptation policies.The study was funded by the FP7 LUC4C project (grant no. 603542

    Schmerzen in der Mittelhand - Dupuytren, Tendinitis oder doch ein Tumor?

    No full text
    corecore