66 research outputs found
Bottom-Up Synthesis of Polymeric Micro- and Nanoparticles with Regular Anisotropic Shapes
Shape-anisotropic polymeric micro- and nanoparticles are of significant interest for the development of novel composite materials, lock-and-key assemblies, and drug carriers. Currently, syntheses require external confinement in microfluidic devices or lithographic techniques associated with significant infrastructure and low productivity, so new methods are necessary to scale-up such production efficiently. Here we report bottom-up polymerization of regular shape-anisotropic particles (polygonal platelets with different numbers of edges, with and without protruding asperities, and fibrilar particles with controllable aspect ratios), with size control over 4 orders of magnitude (∼50 nm-1 mm). Polymerization also enables the study of much smaller shapes than could previously be studied in water suspensions, and we study the fundamental limits of the self-shaping transition process driving these transformations for monomer oil droplets of stearyl methacrylate (SMA) monomer oil. We show the method is compatible with a variety of polymerizing monomers and functional modifications of the particles (e.g., composites with magnetic nanoparticles, oil-soluble additives, etc.). We also describe postsynthetic surface modifications that lead to hierarchical superstructures. The synthesis procedure has great potential in efficient nanomanufacturing as it can achieve scalable production of the above shapes in a wide range of sizes, with minimum infrastructure and process requirements and little maintenance of the equipment
Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion
BACKGROUND:The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. METHODOLOGY:The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. CONCLUSIONS:The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion
Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV
A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses
Ketoprofen-loaded polymer carriers in bigel formulation: an approach to enhancing drug photostability in topical application forms
Velichka Andonova,1,2 Petya Peneva,1,2 George S Georgiev,3 Vencislava T Toncheva,3 Elisaveta Apostolova,4 Zhivko Peychev,5 Stela Dimitrova,6 Mariana Katsarova,6 Nadia Petrova,7 Margarita Kassarova1,2 1Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, 2Technological Center for Emergency Medicine (TCEMED), Plovdiv, 3Faculty of Chemistry and Pharmacy, Sofia University “St Kliment Ohridski”, Sofia, 4Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, 5Department of Medical Informatics, Biostatistics and e-learning, Faculty of Public Health, Medical University-Plovdiv, 6Department of Chemistry and Biochemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv, 7Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia, Bulgaria Abstract: The purpose of the study was to investigate the stability and biopharmaceutical characteristics of ketoprofen, loaded in polymeric carriers, which were included into a bigel in a semisolid dosage form. The polymer carriers with in situ-included ketoprofen were obtained by emulsifier-free emulsion polymerization of the monomers in aqueous medium or a solution of the polymers used. The morphological characteristics of the carriers, the in vitro release and the photochemical stability of ketoprofen were evaluated. The model with optimal characteristics was included in a bigel formulation. The bigel was characterized in terms of pH, rheological behavior, spreadability, and in vitro drug release. Acute skin toxicity, antinociceptive activity, anti-inflammatory activity, and antihyperalgesic effects of the prepared bigel with ketoprofen-loaded polymer carrier were evaluated. The carriers of ketoprofen were characterized by a high yield and drug loading. The particle size distribution varied widely according to the polymer used, and a sustained release was provided for up to 6 hours. The polymer mixture poly(vinyl acetate) and hydroxypropyl cellulose as a drug carrier, alone or included in the bigel composition, improved the photostability of the drug compared with unprotected ketoprofen. The bigel with ketoprofen-loaded particles provided sustained release of the drug and had optimal rheological parameters. In vivo experiments on the bigel showed no skin inflammation or irritation. Four hours after its application, a well-defined analgesic, anti-inflammatory, and antihyperalgesic effect was registered. The polymer mixture of poly(vinyl acetate) and hydroxypropyl cellulose as a carrier of ketoprofen and the bigel in which it was included provided an enhanced photostability and sustained drug release. Keywords: antihyperalgesic effect, antinociceptive activity, biphasic systems, carrageenan-induced edema, emulsifier-free radical polymerizatio
- …