21 research outputs found

    Attosecond resolved charging of clusters

    Full text link
    Attosecond laser pulses open the door to resolve microscopic electron dynamics in time. Experiments performed include the decay of a core hole, the time-resolved measurement of photo ionization and electron tunneling. The processes investigated share the coherent character of the dynamics involving very few, ideally one active electron. Here, we introduce a scheme to probe dissipative multi-electron motion in time. In this context attosecond probing enables one to obtain information which is lost at later times and cannot be retrieved by conventional methods in the energy domain due to the incoherent nature of the dynamics. As a specific example we will discuss the charging of a rare-gas cluster during a strong femtosecond pulse with attosecond pulses. The example illustrates the proposed use of attosecond pulses and suggests an experimental resolution of a controversy about the mechanism of energy absorption by rare-gas clusters in strong vacuum-ultraviolet (VUV) pulses.Comment: 4 pages, 3 figure

    Rare-gas clusters in intense VUV laser fields

    Get PDF
    A hybrid quantum-classical approach to the interaction of atomic clusters with intense laser fields in the vacuum ultra-violet (VUV) has been developed. Much emphasis is put on localized electrons, those quasi-free electrons which localize about the ions and screen them. These electrons set a time scale, which is used to interpolate between the quantum, rate based description of photon absorption by bound electrons and the classical, deterministic description of the cluster nano-plasma. Typical observables such as total energy absorption, electron and ion spectra are in very good agreement with the experimental findings. A scheme to probe the multi-electron motion in clusters with attosecond laser pulses is introduced. Conventional final state measurements in the energy domain cannot provide information about earlier states of the system due to the incoherent nature of the dynamics. Time-delayed attosecond pulses in the extreme ultra-violet (XUV) are used to probe the transient charging of the cluster ions during the interaction with the laser by measuring the kinetic energy of the electrons detached by the probe pulse. This information is otherwise lost at later times due to recombination. Knowledge about the transient charging would also shed more light on the still controversial subject of the energy absorption mechanisms in the VUV regime. Moving to shorter duration of the excitation, the characteristic time-scales for ionization and plasma equilibration are inversed. An attosecond laser pulse in the VUV regime creates a dense, warm nano-plasma far from equilibrium. Time-delayed attosecond pulses in the XUV probe then both the creation and the relaxation. The latter shows the breakup of the Bogoliubov hierarchy of characteristic times, indicating strongly-coupled plasma dynamics and drawing parallels to the relaxation of extended ultra-cold neutral plasmas with millions of particles

    Surgical Implications in the Pathology of Diabetes Mellitus – Review of the Literature

    Get PDF
    Diabetes mellitus brings together several syndromes, all burdened by a high complexity and with the potential to generate vital impairment. The large number of complications result from the association of high blood glucose level with vascular damage, neuropathy, poor healing and overall increased atherosclerosis process. The clinical manifestation of these complications involves a wide range of manifestations from simple lesions to complex pathology, many of them requiring surgical treatment. Surgical implications of diabetes mellitus include diabetic foot syndrome, soft tissue infections, renal impairment and abdominal pathology

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Rare-gas clusters in intense VUV laser fields

    No full text
    A hybrid quantum-classical approach to the interaction of atomic clusters with intense laser fields in the vacuum ultra-violet (VUV) has been developed. Much emphasis is put on localized electrons, those quasi-free electrons which localize about the ions and screen them. These electrons set a time scale, which is used to interpolate between the quantum, rate based description of photon absorption by bound electrons and the classical, deterministic description of the cluster nano-plasma. Typical observables such as total energy absorption, electron and ion spectra are in very good agreement with the experimental findings. A scheme to probe the multi-electron motion in clusters with attosecond laser pulses is introduced. Conventional final state measurements in the energy domain cannot provide information about earlier states of the system due to the incoherent nature of the dynamics. Time-delayed attosecond pulses in the extreme ultra-violet (XUV) are used to probe the transient charging of the cluster ions during the interaction with the laser by measuring the kinetic energy of the electrons detached by the probe pulse. This information is otherwise lost at later times due to recombination. Knowledge about the transient charging would also shed more light on the still controversial subject of the energy absorption mechanisms in the VUV regime. Moving to shorter duration of the excitation, the characteristic time-scales for ionization and plasma equilibration are inversed. An attosecond laser pulse in the VUV regime creates a dense, warm nano-plasma far from equilibrium. Time-delayed attosecond pulses in the XUV probe then both the creation and the relaxation. The latter shows the breakup of the Bogoliubov hierarchy of characteristic times, indicating strongly-coupled plasma dynamics and drawing parallels to the relaxation of extended ultra-cold neutral plasmas with millions of particles

    The Concept of Learning Cities: Supporting Lifelong Learning through the Use of Smart Tools

    No full text
    This paper presents an initiative in which QR codes on public transport are used to provide citizens with books that they can read and that will improve their general knowledge. It builds on the concept of the learning city and combines it with smart city tools. This paper aims to use a descriptive–empirical approach, including an experiment in Bucharest. This research aims to contribute to the academic world, urban sociology, public administration, and lifelong learning education

    Evaluating the Service Performance of Heavy Axle Load Ballasted Railway by Using Numerical Simulation Method

    No full text
    To evaluate the service performance of the track substructure of heavy axle load (HAL) railway transportation, an inverse analysis was performed to estimate the resilient modulus values of the track substructure, based on the deflection data obtained from light falling weight deflectometer testing. Subsequently, a three-dimensional finite element model was developed to simulate the effect of the train speeds (v) and axle loads (F) on the typical dynamic responses in the railway track system. The results convincingly indicated that increasing v or F can amplify the track vibration. Finally, a critical stress ratio method was adopted to evaluate the service performance based on the numerical results. A recommended range of v and F was determined to maintain the long-term stability of the HAL railway line. The findings can provide guidance for designing the track and maintenance plans to avoid track support failures and ensure track infrastructure resiliency

    Comparison between Retrograde Flexible Ureteroscopy and Percutaneous Nephrolithotomy for the Treatment of Renal Stones of 2–4 cm

    No full text
    Background and objectives: Renal stones are widespread, with a lifetime prevalence of 10% in adults. Flexible ureteroscopy enables urologists to treat lower calyx stones or even complex renal stones through the natural orifice and achieve an acceptable stone-free rate. Hence, we analyzed the effectiveness and safety of FURS versus PCNL in treating renal stones between 20 and 40 mm in diameter. Materials and methods: We retrospectively analyzed 250 consecutive patients with large renal solitary stones (stone burden between 2 and 4 cm) from 1 January 2019 to 31 December 2020. The patients were divided into two groups: group 1 (125 patients), in which the patients were treated by a retrograde flexible ureteroscopic approach, and group 2 (125 patients), in which we used percutaneous nephrolithotomy. Stone characteristics and anatomical data were observed based on the computed tomography (CT) and/or KUB (Kidney-ureter-Bladder) radiography imaging archive. Results: The mean stone burden was 26.38 ± 4.453 mm in group 1 and 29.44 ± 4.817 mm in group 2. The stone-free rate after the first ureteroscopy was higher for the PNL(percutaneous nephrolithotomy) group (90.4%) than the F-URS group (68%). After two sessions of ureteroscopy, the SFR was 88.8% in the first group, and after three procedures, the SFR rose to 95.2%. The overall complication rate was higher in group 1 than in group 2 (18.4% vs. 16.8%), but without statistical relevance (p > 0.5). Furthermore, we encountered more grade III and IV complications in the PNL group (8.8% vs. 4.8%, p Conclusion: Flexible ureteroscopy proves to be efficient in treating renal stones over 2 cm. However, the patients must be informed that more than one procedure might be necessary to overcome the entire stone burden
    corecore