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Chapter 1

Introduction

The quest for structural information with atomic resolution, time resolved on the
time scale of atomic motion, has lead to the development of novel light sources: free
electrons lasers (FEL), as those under construction at LCLS in Stanford, at DESY in
Hamburg or at RIKEN in Japan and attosecond laser pulses in the extreme ultraviolet
(XUV).

Structural information at the atomic level has been obtained so far at synchrotron
facilities by X-ray diffraction, which relies on the ability to bring the sample in crys-
talline form. All objects scatter X-rays, but regular arrangement of several identical
copies leads to coherent superposition of the scattered light at the Bragg peaks, greatly
amplifying the signal and lowering the demands on the intensity of the light source.
However, more than 60% of the proteins cannot be crystallized and thus X-ray-ed yet,
which hinders progress in the area of structural genomics (Altarelli et al. 2006). Syn-
chrotrons cannot provide the photon flux required for single object imaging. At the
same time, their pulse duration of typically 100 ps is thousands of times larger than
the time scale of atomic motion, such that dynamic information cannot be obtained.

These shortcomings will be removed by the upcoming free electron lasers. They
will provide X-ray radiation with laser properties at 0.1 nm wavelength, with pulse
durations in the femtosecond down to attosecond range (Feldhaus et al. 2005; Saldin
et al. 2004a,b; Zholents and Fawley 2004) and intensities up to 1× 1018 W/cm2

(Altarelli et al. 2006) or 1012 photons/pulse. They will be able to resolve the pathways
of chemical reactions or structural transformations during non-equilibrium processes
on the time scale of atomic motion and with atomic resolution in space, as sketched
in Figure 1.1.

By providing the photon flux to enable single object imaging, the FELs uncover
a knowledge gap namely, the interaction of intense high frequency laser radiation
with matter. It is this gap where the current work tries to make a contribution by
also employing a second type of radiation, attosecond XUV laser pulses, as a probe.
Connecting to experiments performed during the first stage of the FEL in Hamburg
(Wabnitz et al. 2002), which lased 2001 in the vacuum ultra-violet (VUV) regime at
98 nm (12.65 eV) (Ayvazyan et al. 2002a,b), we will move to higher frequency 150 eV
(8 nm) based on a new interaction model which puts emphasis on screening effects.
After comparison to more recent experimental data, a pump-probe scheme will be
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presented, where attosecond pulses in the extreme ultra-violet (XUV) will be used
to gain insight into the incoherent transient dynamics of a rare-gas cluster during
the interaction with the VUV FEL pulse. This slow-pump fast-probe scheme will be
advanced to a fast-pump fast-probe setup, which will create and probe a nano-plasma
far for equilibrium showing strongly-coupled behavior, as observed previously with
much larger ultra-cold neutral micro-plasmas (Kulin et al. 2000; Pohl et al. 2005).
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Figure 1.1: The peak brilliance of future and existent FEL facilities compared to the
latest-generation synchrotron radiation sources around the world (left, from Acker-
mann et al. (2007)). FELs will be able to follow time-dependent structural transfor-
mations and produce molecular movies (right, from XFEL (2008)).

Atomic clusters are ideal objects for studying matter properties. They can be
generated in a wide size range (Haberland et al. 1994; Hagena and Obert 1972), from
less than ten atoms up to millions, allowing thus to study the transition from the atom
to the solid phase. The transition is by far not linear, as experiments of laser-cluster
interaction in the infrared domain have shown. Clusters can absorb energy much
more efficiently than atoms or solids, leading to spectacular observations, ranging
from ultra-fast ions in the MeV range or very fast electrons in the keV domain, to the
generation of coherent and incoherent X-ray radiation and culminating with nuclear
fusion, where fast neutrons are produced (Ditmire et al. 1999). These phenomena
are all rooted in the reduced size of the clusters, which enables new mechanisms of
absorption, must of them due to the large surface to volume ratio. Moreover, energy
is kept within a well defined volume and fully redistributed among the particles that
have absorbed it, unlike in the solid phase, where it dissipates into the lattice.

Attosecond XUV pulses, which will be used in this work to probe the transient
cluster dynamics, are filtered from the high harmonics produced when a strong IR
laser is focused into a dilute gas (Agostini and DiMauro 2004). Isolated pulses as
short as 170 as in the extreme-ultraviolet (Goulielmakis et al. 2007; Schultze et al.
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2007) have been achieved. They have been used in pump-probe setups to initiate
an excitation, which was probed with the IR field that originally created the XUV
pulse in a method called streaking (Kienberger et al. 2004). The momentum and
time distribution of an electron wave packet could thus be recorded as it emerges
into continuum. Created via photo-ionization, the wave packet allowed the direct
measurement of the intensity profile of the attosecond pulse (Hentschel et al. 2001),
as well as direct measurement of light oscillations (Goulielmakis et al. 2004). When
created via the relaxation of a core hole, it allowed the direct measurement of an
Auger-decay (Drescher et al. 2002).

In these experiments, attosecond pulses have only been used to initiate coherent
single- to few electron dynamics, whose time structure could have also been deter-
mined without an additional probe pulse. Full measurement in the energy domain at
the end of the experiment would have returned the same result by a simple Fourier
transform, due to the canonical conjugation of time and energy. The dissipative na-
ture of cluster dynamics, where the absorbed energy is quickly redistributed across
many degrees of freedom, destroys coherence and makes it impossible to retrieve in-
formation about transient states of the system at later times, when the particles have
arrived at the detector. For this reason, a pump-probe scheme will be presented,
where attosecond pulses will be used not as fast δ-like excitation, but as a fast, in-
stantaneous probe of the internal, incoherent dynamics of the cluster.

Chapter 2 familiarizes the reader with current topics of laser-cluster interaction
starting from the basic unit, the atom. Atomic single- and multi-photon, as well
as tunnel and field-ionization are reviewed. Then, representative experimental and
theoretical findings of laser-cluster interaction will are summarized, with emphasis on
their cooperative (read local) or collective character.

Chapter 3 presents the experiment that has sparked this work namely, the surpris-
ingly high energy absorption of rare-gas clusters when exposed to VUV radiation from
a free electron laser (Wabnitz et al. 2002). Because the free electron laser in Hamburg
(FLASH) was and still is the only FEL actually working in the high frequency range,
this experiment will be referred quite often to as “the Hamburg experiment”. provide
beam time.

Chapter 4 presents a hybrid quantum-classical model for laser cluster interaction
with emphasis on plasma effects. Based on the time scale set by localized electrons, a
coarse-grained dynamics is introduced, that performs the interpolation between the
rate based, quantum-mechanical approach of photo-ionization and the deterministic,
classical propagation of the ionized particles which, in a cluster, modify the way
bound electrons can absorb photons.

The model is then illustrated in Chapter 5 at the adiabatic excitation of an Ar147

cluster by VUV radiation similar to that of the Hamburg experiment. Adiabaticity
refers in this context to the very long duration of the laser pulse compared to the time
scale of electron dynamics, such that the electron plasma can be considered in equi-
librium at any time during the excitation. A comparison to more recent experimental
results at 32 nm is also made.

Chapter 6 introduces a pump-probe scheme, aimed for experimental proof, or
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distinction between existent theoretical models for the Hamburg experiment. An
attosecond XUV laser pulse photo-ionizes valence electrons of the cluster ions, whose
charge is imprinted on the kinetic energy of the XUV photo-electrons at the detector.

Chapter 7 analyzes the case where both the pump and the probe pulse are filtered
from the high harmonics. The pump pulse is much shorter such that the excitation
becomes diabatic, allowing for competition between ionization and relaxation of the
nano-plasma. It is shown that the limit of ultra-short excitation can be used to initiate
strongly-coupled plasma behavior with as few as 55 electrons, otherwise observed in
extended ultra-cold neutral plasma with millions of particles.

The hybrid quantum-classical interaction model, the attosecond pump-probe scheme
and the diabatic excitation scheme have been published as Georgescu et al. (2007a),
Georgescu et al. (2007b) and Saalmann et al. (2008), respectively.
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Chapter 2

Interaction of light with atoms and
clusters

Optical properties of atomic clusters have been used since ancient times by the
Romans for their glass work. They poured gold salts into the glass mixture to obtain
gold nano-particles of various sizes, which they used to change the color of the glass
in a wide range from light violet to deep red. The Lycurgus cup, now exposed at the
British Museum in London, is considered one of their masterpieces. When illuminated
from inside it shows the typical red color, but is green when illuminated from outside,
due to the scattering spectrum of the nano-particles. These properties also fascinated
Mie, who was the first to wonder about the properties of gold nano-particles if their
size could be reduced even more, down to one atom (Mie 1908). Such studies were
possible only in the past 20 years with the technological advances in creating size
controlled cluster beams in the range from less then ten to millions of atoms. They
proved this way to be more than just a liner transition between the atom and the
bulk. The complex interplay of high, solid-phase local density, quantum-size effects
and large surface to volume ratio have turned them into completely new materials
with unique chemical, optical, magnetic and (di)electric properties.

This chapter will summarize optical absorption mechanisms in clusters starting
from the atom, the basic unit, with its main photo-ionization mechanisms: single- and
multi-photon, tunnel- and field ionization. Then, in the second section, we will move
to larger systems, presenting the basic experimental and theoretical findings of the
past years, grouped in collective effects, induced by the finite size, and cooperative
effects, caused by the high local density.

2.1 Ionization of an isolated atom

First observations of the interaction of light with matter date back to 1839, when
Alexander E. Becquerel discovered the photo-voltaic effect (Becquerel 1839). He
dipped two electrodes in an electrolyte solution and was able to measure a current
when one of them was illuminated by sun light, which he correctly attributed to a
chemical reaction (Williams 1960). Its most notable application nowadays is found
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in solar cells.
The photoelectric effect was discovered in 1877 by Heinrich Hertz (Hertz 1887),

accidentally of course, while looking for resonance phenomena between two electric
oscillations, electromagnetic radiation generated by electrical discharge between two
electrodes. He observed that the strength of the discharge could be amplified with
UV-light, but was not very much interested. The investigations were carried on by
his student, Wilhelm Hallwachs, who also discovered that negatively charged bodies
discharge when exposed to UV light (Hallwachs 1888a), while neutral metallic surfaces
acquire positive charge (Hallwachs 1888b). The effect carried his name for a long time.

The explanation was delivered 1905 by Einstein (Einstein 1905). Starting from
Wien’s law of black body radiation, he studied the entropy of low density radiation
within Boltzmann’s statistical formulation of thermodynamics and concluded

. . . that: Monochromatic radiation of low density (within the range of va-
lidity of Wien’s radiation formula) behaves thermodynamically as though
it consisted of a number of independent energy quanta of magnitude
Rβν/N .

Assuming that only one energy quanta interacts with an electron at a given time and
that it transfers its whole energy to the electron he wrote down

1

2
mv2 = Πe = hν − P , (2.1)

where Π is the stopping potential, equal to the kinetic energy of the particles and P is
the work necessary to get the electron out of the metal. Equation (2.1) was supported
by Lenard’s extensive investigations, which showed that the velocity of the emitted
particles was dependent on the color of the incoming radiation, but independent of
its intensity (Lenard 1902). This was in contrast to standard understanding about
resonances, which due to the successful Maxwellian electrodynamics were supposed
to lie at the origin of the photo-electric effect.

Although the hypothesis of energy quanta had already been introduced by Planck
in 1901 (Planck 1901) and seemed to have experimental support in Lenard’s findings,
it faced wide criticism. Most of it from Planck himself, who, as many others, was not
yet prepared to drop the Maxwellian theory of electrodynamics. Final experimen-
tal proof of Eq. (2.1) came 1916 from Millikan, who held Lenard’s investigation for
insufficient to fully confirm Eq. (2.1) and actually wanted to prove Einstein wrong
(Millikan 1916).

The process in which the electron absorbs the energy from a photon was explained
another ten years later within the new quantum mechanics. Schrödinger solved the
wave equations (Schrödinger 1926)

i~
∂ψ

∂t
= −~2

2
∆ψ + V (r)ψ − E cos(2πνt)

∑
i

eiriψ (2.2)

for a classical electromagnetic field in first order perturbation theory and asserted the
absorption of energy from an electromagnetic wave to be indeed a resonance. Not one
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in the common sense, where the frequency of the driving matches an eigenfrequency,
but one where it matches a difference of eigenfrequencies that is, eigenenergies. The
approach emphasizes the wave-like behavior of electromagnetic radiation. Dirac em-
phasized the particle-like behavior (Dirac 1927) and was thus able to describe not
only stimulated emission and absorption of light quanta, but also their spontaneous
emission.

In the following we consider the Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉 (2.3)

with the single electron Hamiltonian

H =
p2

2
− Z

r
− rE(t) (2.4)

partitioned as

H = H0 + V (t), with H0 =
p2

2
− Z

r
and V (t) = −rE(t) , (2.5)

to describe the interaction of an atom with electromagnetic radiation. The eigenstates
ϕn and eigenvalues En of the Hamiltonian H0 of the field-free atom are known

|ϕn(t)〉 = e−
i
~Ent|ϕn〉 . (2.6)

The single-particle formulation has been chosen for simplicity. The following con-
siderations are valid ad literam for many-electron atoms as well, but the ionization
process itself involves a single active electron.

Starting in an eigenstate |ϕi〉 at t = 0, one propagates formally the Schrödinger
equation in Green’s function’s formalism

|Ψ(t)〉 = |ϕi(t)〉+

ˆ ∞
0

G0(t, t′)V (t′)|Ψ(t)〉dt′ , (2.7)

where and G0(t, t′) is the Green’s function of the unperturbed system(
i~
∂

∂t
−H0

)
G0(t, t′) = δ(t− t′) (2.8)

given by

G0(t, t′) =
1

i~
Θ(t− t′)

∑̂
|ϕn(t)〉〈ϕn(t′) | . (2.9)

The integral (2.7) was extended to infinity because G0(t, t′) also takes care of time
ordering. Recursive application of Eq. (2.7) onto itself leads to the infinite series

|Ψ(t)〉 = |ϕi(t)〉+

ˆ ∞
0

G0(t, t1)V (t1)|ϕi(t1)〉 dt1

+

¨ ∞

0

G0(t, t1)V (t1)G0(t1, t2)V (t2)|ϕi(t2)〉 dt1dt2

+

˙ ∞

0

G0(t, t1)V (t1) · · ·G0(tn−1, tn)V (tn)|ϕi(tn)〉 dt1 · · · dtn

+ . . . .

(2.10)
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The number of laser “kicks” is equal to the number of photons involved. In first order
perturbation theory only the first term of the series (2.10) is retained because the
light field is much weaker than the attraction of the nucleus. Projection of Ψ(t) onto
an eigenstate ϕf(t) of H0

i selects a single term from the summation in Eq. (2.9) and
yields the probability to find the atom in that state at the given time t

wi→f(t) = |〈ϕf(t) |Ψ(t)〉|2 =
1

~2

∣∣∣∣ˆ t

0

〈ϕf|V (t1)|ϕi〉e
i
~ (Ef−Ei)t1 dt1

∣∣∣∣2 . (2.11)

The time integration can be performed analytically for V (t) = −rε̂0E cosωt and an
average transition rate is obtained, which can be reduced to a cross-section if the
photon current density is eliminated

σi→f = 4π2α~ωλ|〈ϕf|ε̂0r|ϕi〉|2ρ(Ef) . (2.12)

ε̂0 is the polarization of the field and E its amplitude; er is the electric dipole operator
and ρ(Ef) is the final density of states. ρ(E) is a δ-function ρ(Ef) = δ(Ef − Ei ± ~ω)
if Ef is a discrete level or ρ(Ef) = 1 otherwise, provided that |ϕf〉 are also energy
normalized ˆ ε+∆ε

ε−∆ε

〈ϕε |ϕε′〉dε′ = 1 . (2.13)

With increasing field strength there are enough photons in the vicinity of an atom
that the higher order terms of Eq. (2.10) become significant. First evaluation of the
second order term was presented in 1931 by Maria Göppert-Mayer in her dissertation
on Elementarakte mit zwei Quantensprüngen (Göppert-Mayer 1931). She studied
processes such as spontaneous and stimulated emission of two photons, of equal or
different frequency, as well as the emission of a photon due to an inelastic collision.

Experimental observation of multi-photon absorption came much later with the
invention of the laser (Maiman 1960, 1967; Schawlow and Townes 1958). The rapid
development of laser technology provided soon power densities sufficient for absorp-
tion of several tens of photons, even more then the minimum required for ionization
in process known as ‘above-threshold ionization’ (ATI) (Agostini et al. 1979). Even
stronger laser fields can bend the nuclear potential so strongly, that the bound elec-
tron can tunnel out or even be ionized instantly.

Figure 2.1 presents an overview of ionization processes in atoms. The field in-
tensity increases from left to right, the photon energy from right to left. For weak
power density, only single photons of high energy can be absorbed. The multi-photon
terms gain significance with increasing laser intensity, such that several photons can
contribute to ionize one electron in a single act. If the field is even stronger, it can
bend the Coulomb potential of the nucleus so strongly that the electron can tunnel
out. It is important though, that the frequency of the laser be less than the revolution
period of the electron, such that the electron can make several attempts to tunnel
through the barrier. Finally, for even stronger laser fields, when

I >
E4

ip

16Z2
(2.14)
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Figure 2.1: Atomic ionization mechanisms in a light field. From left to right: single-
photon, multi-photon, tunnel and field ionization.

the electron is all of a sudden in the continuum. The condition is also known as the
Bethe rule (Bethe and Edwin 1977).

The transition between the multi-photon and the tunneling regime is indicated by
the Keldysh parameter (Keldysh 1964)

γ = ωτ =

√
Eip

2Up
, (2.15)

which compares the tunneling time τ to the period 2π/ω of the light field. Eip is the
ionization potential of the electron and

Up =
E2

4ω2
(2.16)

is the ponderomotive energy, the average kinetic energy of a free electron driven by
an oscillating electric field of amplitude E and frequency ω. The tunneling time τ
is defined as the time needed by a classical electron of velocity

√
2Eip to travel a

distance equal to the width of the barrier.
For γ � 1 the barrier is almost static and the electron can tunnel through. If

γ � 1, the field is too fast. The Coulomb potential is shaken quickly back and forth,
such that the electron is excited vertically by absorption of one or more photons. In-
between both phenomena coexist. Tunneling persists, but is no longer adiabatic. The
rapid field oscillations heat up the electron while still being underneath the barrier,
initiating the transition to vertical ionization (Ivanov et al. 2005) (see also figures
3 and 4 therein). Recent time-resolved experiments with sub-femtosecond resolution
have demonstrated electron tunneling out at field maxima for γ ∼ 3 (Uiberacker et al.
2007).

Multi-photon ionization (MPI) rates can be obtained from Eq. (2.10) by evaluating
the lowest order terms. The results can overestimate the rate by a few orders of
magnitude (Potvliege and Shakeshaft 1989), but reproduce the angular distributions
quite well (Kracke et al. 1988).

S-matrix theories can provide an ab initio non-perturbative approach for strong
field problems. One such theory is IMST (intense-field many-body S-matrix theory)
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(Becker and Faisal 2005), which accounts simultaneously and systematically for the
different reference Hamiltonians (or dominant interactions) in the initial and final
states, as well as intermediate (virtual) Hamiltonians accounting for internal rear-
rangement in the many-electron system during the interaction with the laser.

One propagates the Schrödinger equation (2.3) as well

|Ψ(t)〉 = |ϕi(t)〉+

ˆ tf

ti

G(t, t′)V (t′)ϕi(t
′)dt′ , (2.17)

but now with the total Green’s function G(t, t′) of the full Hamiltonian H(t)(
i~
∂

∂t
−H(t)

)
G(t, t′) = δ(t− t′) (2.18)

The initial state of the system is dominated by the interaction with the atom,
whereas the final one is dominated by the laser and the atom is rather a weak per-
turbation, hence a second partitioning H(t) = H0

f + Vf(t) is introduced

H0
f =

p2

2
− rε̂0E cosωt , Vf = −Z

r
, (2.19)

which groups the dominant terms into the reference Hamiltonian H0
f . The total

Green’s function G(t, t′) is expanded in terms of the Green’s function Gf(t, t
′) of

electron-laser system

G(t, t′) = Gf(t, t
′) +

ˆ tf

ti

Gf(t, t1)Vf(t1)G(t1, t
′)dt1 (2.20)

and inserted back into Eq. (2.17) to obtain

Ψ(t) = ϕi(t) +

ˆ tf

ti

Gf(t, t1)V (t1)ϕi(t1) dt1

+

¨ tf

ti

Gf(t, t2)Vf(t2)G(t2, t1)V (t1)ϕi(t1) dt1dt2 .

(2.21)

The scheme can be extended to higher interaction orders by expanding the total
Green’s function G(t, t′) in the second term of Eq. (2.21) with respect to other inter-
mediate partitionings of the total Hamiltonian H(t). Even the first term contains all
orders with respect to the number of photons involved (Becker and Faisal 2005).

The eigenstates of Hf are the well known Volkov wave functions. The first integral
of Eq. (2.21) is thus equivalent to the Keldysh approximation (Keldysh 1964), where
the electron is propagated until t1 in his bound state, is kicked by the laser and prop-
agates further on a Volkov state in the continuum. For a linearly polarized field, the
Keldysh-Faisal-Reiss (KFR) approximation (Faisal 1973; Keldysh 1964; Reiss 1980)
leads to the ionization rate

Γ+
KFR = 2π

∞∑
N=N0

kN(Up −Nω)2

ˆ
dk̂NJ

2
N

(
|kN |xp,

Up

2ω
, 0
)
|〈ϕkN (r) |ϕi(r)〉|2 , (2.22)
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where JN is the generalized Bessel function of three arguments (Becker and Faisal
1994; Reiss 1980) and N0 the minimum number of photons required for ionization. Up

is the ponderomotive energy, xp is the associated ponderomotive amplitude xp = E/ω2

of the oscillatory motion. The general ionization rate for elliptic polarization can
found in Ref. (Becker and Faisal 2005). The KFR approximation, though only first
order in the interaction, contains all photon orders already.

If the expansion of G(t, t′) with respect to the final reference Hamiltonian H0
f is

applied again in Eq. (2.21), the second order term will correspond to the re-collision
of the electron with the ion¨ tf

ti

Gf(t, t2)Vf(t2)Gf(t2, t1)Vi(t1)ϕi(t1) dt1dt2 . (2.23)

The electron propagates on the atomic bound state, is kicked by the laser, propagates
on a Volkov state where it collides against the nucleus and propagates off on a Volkov
state again. Appropriate formulation of the initial, intermediate and final Hamiltoni-
ans can then describe processes such as high-harmonic generation or double-ionization
(Becker and Faisal 2005).

S-matrix theories provide a clear picture of the basic mechanisms involved in ion-
ization and deliver good qualitative results. Quantitatively, they underestimate by
more than one order of magnitude because the long range Coulomb interaction is not
included in the final state. Coulomb corrected KFR rates, as proposed by Becker
et al., are then able to reproduce the results of Floquet calculations, direct numer-
ical 3D time-dependent solutions of the Schrödinger equation and, most important,
experiments (Becker et al. 2001)

Γ+
ion =

(
2kBEB
E

)2Z/kB

Γ+
KFR . (2.24)

3D time-dependent propagation of Schrödinger’s equation and Floquet theories
provide indeed exact alternatives, but the computational requirements increase ex-
ponentially with the number of electrons. However, it is more difficult to single out
ionization mechanisms due to the large amount of data.

2.2 Cluster ionization: cooperative and collective

effects

Optical excitation of atomic clusters has been the main instrument for investigat-
ing their structural and dynamical properties. Photo-electron spectroscopy reveals the
ground state density of states, photo-absorption experiments map out the excitation
spectrum. Optical excitation has been employed for initiating vibronic excitations,
for studying fragmentation, evaporation or dissociation.

We will focus on those experiments dealing with energy absorption from intense
electromagnetic radiation. Clusters have proved to absorb energy much more effi-
ciently than atoms or solids, leading to spectacular observations such as MeV fast
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ions or even nuclear fusion. This efficiency is mostly rooted in their reduced size,
which enables new absorption mechanisms and redistributes the energy only among
the particles that have absorbed it. Dissipation into the lattice, as in the solid phase,
is here absent.

The first part of this section addresses the main experimental observables. The
second part will present those experimental and theoretical results which underline
cooperative behavior, a consequence of the high density. The third and last part
will then summarize collective effects. A review of laser-cluster interaction has been
compiled in much more detail by Saalmann et al.(Saalmann et al. 2006).

It is useful to consider the interaction with intense laser fields as a three step
process, sketched in Figure 2.2. Clusters have been reported to disintegrate fully
already at power densities of 1× 1012 W/cm2 for 98 nm radiation (Laarmann et al.
2004). Beyond this value, energy absorption is dominated by plasma effects, which
renders the electronic structure of the cluster irrelevant. When the leading edge of the
pulse hits the cluster, the atoms interact with the light field as if they were isolated.
The charge of the cluster increases gradually, up to a point where it traps the further
photo-electrons released by the light field from their mother atoms. The second step
of the process starts now, the most complex of them all and where the most energy
is absorbed. Complex cooperative and/or collective mechanisms resulting from the
high density of the cluster and its finite size are now in action. The third step marks
the relaxation of the system after the laser has been turned off. The cluster expands
and the energy is redistributed among the various degree of freedom.

I

II

III

Figure 2.2: Three-step model of the laser cluster interaction. I: neutral cluster, atoms
interact with the field as if independent. II: atoms become aware of the neighboring
ions and electrons, complex, cooperative and collective phenomena; III: relaxation,
energy is redistributed among the various degrees of freedom.

Last and Jortner (1999) named those electrons trapped inside the cluster inner-
ionized, or quasi-free. They are delocalized with respect to their mother atoms, but
still localized with respect to the cluster due to their negative total energy. They
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can acquire positive total energy by further absorption from the laser field or simply
collisions with other electrons. In this case they can leave the cluster and are called
outer-ionized. The distinction between inner- and outer-ionized electrons will prove
essential when analyzing energy absorption mechanisms. Only inner-ionized electrons
can further absorb energy from the laser field.

Although a plasma has formed, the cluster is transparent to electromagnetic ra-
diation because it is much smaller than the wavelength of the field. The dipole
approximation holds for the cluster as a whole. Propagation effects, such as the skin
depth encountered with extended plasmas are not present here.

λ ~ω I = 1014 W/cm2 1016 W/cm2 1018 W/cm2

780 nm 1.5 eV γ = 1.17 0.117 0.012
Up = 5.67 eV 567 eV 56.7 keV
xp = 8.28 Å 82.8 Å 828 Å

98 nm 12.65 eV γ = 9.37 0.937 0.094
Up = 89 meV 8.9 eV 890 eV
xp = 0.466 Å 4.66 Å 46.6 Å

3.5 nm 354.23 eV γ = 262 26.2 2.62
Up = 0.1 meV 11.4 meV 1.14 eV
xp = 0.0006 Å 0.006 Å 0.06 Å

Table 2.1: Keldysh parameter γ, ponderomotive amplitude xp and energy Up for laser
systems typically employed in experiments with atomic clusters. For γ, the ionization
potential Eip = 15.76 eV of Ar has been used.

The strength of the electron-light coupling is described by the ponderomotive
amplitude xp and energy Up

xp =
E
ω2

, Up =
E2

4ω2
. (2.25)

They describe the amplitude and average kinetic energy of the oscillations performed
by a free classical electron driven by an electromagnetic field of amplitude E and
frequency ω. When bound inside an atom, the coupling is additionally described by
the Keldysh parameter γ (2.15) which characterizes the photon absorption regime.

Table 2.2 summarizes γ, xp and Up for laser systems typically used to study atomic
clusters, such as Ti:Sa and FELs. Together they characterize energy absorption as
a whole: at atomic level in the first step, as well as at cluster level in the second
one. The infrared (IR) regime is dominated by multi-photon or tunnel-ionization.
The ponderomotive amplitude xp exceeds the size of the cluster and Up reaches in
the keV domain. Once ionized, the electrons are dragged forth and back through the
whole cluster reaching energies on the order of Up or larger. With X-rays, both xp

and Up are negligible and single-photon absorption takes over. In-between, in the
VUV range, xp is small, but not negligible and both multi-photon and single-photon
absorption are possible.
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2.2.1 Experimental observables

Typical observables are the charge distribution of the ions, as the well as the
velocities of the ions and electrons. Highly charged ions (Pt20+ (Köller et al. 1999),
Xe20+ und Kr18+ (Snyder et al. 1996), Xe8+ (Wabnitz et al. 2002)) have been detected,
which can be accelerated up to 1 MeV in the Coulomb explosion (Ditmire et al.
1997b). Much lighter, the fastest electrons reach only 3 keV (Ditmire et al. 1998).
The electrons trapped inside the cluster can form a very hot plasma, which will emit
continuous bremsstrahlung in the X-ray domain. Electron impact or multi-photon
absorption can create core whole excitations in the ions, which then relax by emission
of characteristic X-rays (Adoui et al. 2003; Deiss et al. 2006; Lamour et al. 2005;
Schroeder et al. 1998), showing transient ionization states of up to Xe44+(McPherson
et al. 1994).

Alternatively, one can directly measure the amount of absorbed energy by mea-
suring the intensity of the laser beam after the interaction region (Ditmire et al.
1997a). The method presents the advantage that the energy of very slow electrons
and, most important, neutral atoms can be measured because they would otherwise
escape undetected. Efficiency beyond 90% (Schroeder et al. 1998) or even > 95% has
been observed (Ditmire et al. 1997a).

Several groups have detected neutrons as products of nuclear fusion from collisions
of very fast ions coming from different clusters (Ditmire et al. 1999; Grillon et al.
2002; Madison et al. 2004; Zweiback et al. 2000). Ditmire et al. (1999) have exposed
D2 clusters sizing roughly 50 Å to short, T = 35 fs, intense I = 2× 1016 W/cm2

laser pulses at λ = 820 nm and placed neutron detectors at distances of 1, 2.5 and
3.2 m from the interaction region. They allowed them to measure the velocity of
the neutrons and, as expected, 2.45 MeV fast neutrons characteristic for the nuclear
reaction

D + D→ He3 + n (2.26)

were detected. The equivalent yield of 105 neutrons per joule of laser energy was
comparable to the efficiency of large-scale laser-driven fusion experiments such as the
NOVA laser of the LLNL, with as much as 30 kJ of laser energy and repetition rate
of one shot per hour (Dittrich et al. 1994).

2.2.2 Cooperative effects

They could also be called proximity effects. Due to the high density, the ions can
cooperate to absorb more photons from the laser field.

The simplest cluster is a diatomic molecule. Strong-field ionization of diatomic
molecules has shown enhancement of the ionization rate when they are stretched
beyond their equilibrium inter-nuclear separation. The enhancement factor can reach
several orders of magnitude over the ionization rates at smaller or larger distances
(Boyer et al. 1989; Codling et al. 1989; Frasinski et al. 1987; Seideman et al. 1995; Zuo
and Bandrauk 1995) and is largely independent of the laser frequency. Fig. 2.3(left)
shows calculated yields for H+

2 (Zuo and Bandrauk 1995) in a linearly polarized field as
a function of the inter-nuclear separation. The ionization yield is low at equilibrium
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(R = 2 Å) due to the large ionization potential Eip = 30 eV. The molecular ion
behaves just like an atom. The yield increases with increasing inter-nuclear distance
and peaks twice, first at 7 Å and then 10 Å. The ionization of atomic hydrogen is
shown for reference with a small rectangle.

The enhanced ionization (EI) proved to be due to the combined action of the laser
field and of the partner ion, as shown in Fig. 2.3(right). Together they can lower the
internal barrier strongly and increase the chance of the electron to tunnel out into
the continuum. Non-adiabaticity is here crucial. If the field changed adiabatically,
the electron would tunnel through the internal barrier into the lower well, leaving
the upper well empty when the field reaches the maximum. Ionization would only
occur by tunneling through the external, higher and wider barrier. The non-adiabatic
variation of the laser field keeps the upper level populated by up to 50% (Zuo and
Bandrauk 1995), such that the electron can tunnel out. One may say that internal
tunneling is suppressed by the non-adiabatically varying field. For larger separations
the atomic limit is reached, as seen in Fig. 2.3(left). EI has also been observed with
non-symmetric molecules (Kamta and Bandrauk 2007).

Figure 2.3: Left: ionization rate of the H+
2 molecular ion in a linearly polarized

I = 1014 W/cm2 and λ = 1064 nm laser field. Right: lowest two dc-field-induced
levels of H+

2 , 1σ+ and 1σ−, in the effective potential Vc(R) +E0z. The strength of the
dc field is E0 = 0.0533 au (I = 1× 1014 W/cm2). From (Zuo and Bandrauk 1995).

EI has not yet been detected experimentally in clusters, but simulations have
proved it to be very effective. Siedschlag and Rost (2003) investigated EI in Ne16,
Ar16, Kr16 and Xe16 clusters . They found in all cases maximum ionization when
the average inter-ionic distance reached R∗ = 1.2R0, where R0 is the average inter-
atomic distance at equilibrium. The enhancement did not vary significantly for the
frequencies they have investigated, namely ω = 1.5, 2 and 3 eV, nor with circularly
polarized light. The latter would actually be expected due to the almost spherical
symmetry of the clusters. With molecules, EI is suppressed when the light is polarized
perpendicularly to the molecule (Bandrauk and Ruel 1999; Banerjee et al. 1999).

Because EI is mostly independent of the laser frequency, it should be possible to
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distinguish from a plasmon resonance by varying the laser frequency. Such experi-
ments have not yet been performed.

Higher laser frequency suppresses tunneling, as reflected by the higher Keldysh
parameter in Table 2.2. Ionization enhancement occurs now due to inner-ionization.
The lower potential barrier allows for single photon excitation of bound electrons
into inner-ionized cluster states, as shown in Figure 2.4. This idea was suggested by
Siedschlag and Rost (2004) to lie at the origin of the Hamburg experiment that will be
described in Chapter 3. The process is very efficient, because the ionization potential
of the rare-gas atoms increases linearly with the charge state. The inter-ionic barrier
is also proportional to charge, such that, if the mechanism has worked once, it will
work until a jump in the ionization potential occurs. This happens when a very strong
bound orbital is reached, such as 4d in Xe or 2p in Ar. Until that point is reached, up
to 8 electrons per atom will have been ionized forming a very dense, warm plasma.
Driven by the laser field, the electrons perform small oscillations and absorb energy
through inverse bremsstrahlung due to scattering at the highly charge ions. There
is still no experimental evidence, but Chapter 6 will present how attosecond pulses
could provide it.
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Figure 2.4: Inner-ionization in a cluster. The Hamburg experiment showed that two-
photon ionization is much less probable with respect to single-photon absorption.
This favors inner ionization, where electrons can be excited from atomic bound states
into cluster states by absorption of a single photon. From (Siedschlag and Rost 2004).

Proximity can not only enhance ionization but also inhibit it. Saalmann and
Rost (2002) have studied the ionization of Ar clusters with X-rays at 350 eV photon
energy. Other than in the previous cases, the photon is absorbed here by a core
electron. The remaining vacancy can be refilled with an electron from the valence
orbital via Auger-decay, allowing thus for further photo-ionization. On the other
hand, valence electrons can tunnel resonantly to a neighboring ion if the equivalent
state is vacant there. This leads to an overall delocalization of valence electrons which
decreases the refill rate of the core orbitals, preventing absorption of further X-ray
photons.

Figure 2.5 compares the charging of two clusters, Ar13 and Ar55, when intra-cluster
tunneling was considered (dashed lines) or not (dot-dashed lines). Ionization is lower
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Figure 2.5: Average charge per atom for two Ar clusters, Ar13 and Ar55, as a func-
tion of the intensity of the 100 fs, 350 eV laser pulses they have been exposed to.
Intra-cluster tunneling was included (dashed lines) or not (dot-dashed lines). The
continuous lines show the charging of the isolated Ar atom under the same laser
parameters.

for the former. In both cases, further plasma heating is absent due to the very low
ponderomotive amplitude xp (see Table 2.2). The average charge of the cluster is thus
less than that of the isolated atom due to space charge and recombination effects. In
contrast, in the Hamburg experiment the small, but considerably higher xp allowed
for inverse bremsstrahlung which increased the average ionization above the atomic
level.

2.2.3 Collective effects

Collective effects concern the motion of the electrons in the ionic potential. The
surface plasmon frequency of an Ag9 cluster is roughly 4.0 eV (Köller et al. 1999).
Cluster expansion lowers the plasmon frequency until it matches the frequency of the
IR laser, typically 1.5 eV. Experimentally, this moment of the expansion is reached
either by increasing the length of the pulse, while also decreasing the intensity to keep
the total energy constant (Köller et al. 1999; Zweiback et al. 1999), or by employing a
second, probe pulse whose delay with respect to the first one can be varied (Döppner
et al. 2006; Fennel et al. 2007). In the first case, shown on the left hand side of Fig. 2.6,
an optimum pulse length was observed which maximized the observed charge states.
In the second case, shown in Fig. 2.6 on the right, the delay could be adjusted to
maximize the yield of specific charge states.

Zamith et al. made a more involved experiment (Zamith et al. 2004). They sent
the laser beam through a pulse shaper and tried to maximize the yield of Xeq+, q ≥ 11
by using genetic algorithms. The optimal pulse proved to be a double pulse structure,
with two identical 120 fs long pulses separated by 500 fs.

Saalmann and Rost (2003) have performed molecular dynamics (MD) simulations
and analyzed the resonant behavior by comparison with a damped driven harmonic
oscillator

Ẍ(t) + 2ΓtẊ(t) + Ω2
tX(t) = F (t) , (2.27)
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Figure 2.6: Left: Maximum charge state observed with Pt clusters of 〈N〉 ≈ 20 atoms
that have been exposed to IR λ = 800 nm pulses of variable energy and length (from
(Köller et al. 1999)). Right: Comparison of the Ag10+ yield (diamonds, left axis) with
the maximum kinetic energy Emax of the emitted electrons (dots, right axis) following
dual pulse excitation of large AgN , N ≈ 22 000 with 100 fs, λ = 800 nm pulses at
2.5× 1013 W/cm2 intensity (from (Döppner et al. 2006)).
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Figure 2.7: Left: Overall charging, CM velocity and CM phase of the electron cloud
for a Xe923 cluster exposed to a 200 fs, 780 nm and I = 9× 1014 W/cm2 laser pulse.
Right: eigenfrequency Ωt and damping Γt according to Eq. (2.30); solid line: com-
parison with the surface plasmon frequency Ωt =

√
Qion(t)/R(t)3. From (Saalmann

and Rost 2003)
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where X(t) = At cos(ωt − ϕt) is the center-of-mass (CM) position of the electron
cloud, F (t) = F0 cosωt the driving force, Γt the damping and Ωt the eigenfrequency.
The index of Γt and Ωt means that they vary slowly in time. The oscillation amplitude
At and phase shift ϕt become

At =
F0√

(Ω2
t − ω2)2 + (2Γtω)2

ϕt = arctan
2Γtω

Ω2
t − ω2

(2.28)

and the cycle averaged energy transfer reads

〈Ė〉 = 〈Ėloss〉+ 〈Ėgain〉 = −ΓtA
2
tω

2 +
1

2
F0At sinϕt . (2.29)

Obviously, maximum energy transfer occurs when ϕt = π/2, i.e. resonant behavior
Ωt = ω. Fig. 2.7(left) shows the total charging of a Xe923 cluster, together with the
CM velocity and the CM phase of the electron cloud with respect to the field. The
highest charging rate, as well as the sudden increase of the CM velocity coincide with
the π/2 crossing of the phase. Inverting Eq. (2.28), one can obtain the eigenfrequency
Ωt and the damping Γt as function of the amplitude At and the phase ϕt, which are
obtained directly from the simulation

Ω2
t = ω2 +

F0

At
cosϕt

Γt =
F0

2Atω
sinϕt .

(2.30)

The right hand side of Fig. 2.7 shows Ωt and Γt as function of time. They match the
laser frequency almost simultaneously and stay relatively equal afterwards. The solid
line is the surface plasmon frequency Ωt =

√
Qion(t)/R(t)3.

Highly excited inner-ionized electrons whose mean free path compares to the clus-
ter size can be accelerated in the polarization field of the cluster, as shown in Fig-
ure 2.8(b) (Fennel et al. 2007). If at a maximum of the plasmon polarization p,
the electron is situated at the cluster boundary and both ve · re < 0 and s = ve ·p
hold, then it can be accelerated not only during its transit through the cluster, but
also afterwards. The typical signature are sub-cycle bursts of very fast electrons, as
depicted in Fig. 2.8(a). Both experiment and theoretical simulations found that the
fastest electrons carry 100 times more energy than the ponderomotive energy. This
is remarkable, since compelled by limitations of the theoretical model, the authors
had to simulate Na clusters with a single active electron instead of Ag and the laser
intensity was reduced by a factor of 10 to I = 8× 1012 W/cm2. The mechanism is
particularly efficient if the laser is resonant to the surface plasmon, such that the au-
thors have named it SPARC, surface-plasmon-assisted re-scattering in clusters. They
also interpret it as a kind of multi-plasmon deexcitation instead of damping, since
energy is redistributed into selected single particle channels.
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Figure 2.8: Surface-plasmon-assisted re-scattering in clusters (SPARC) (Fennel
et al. 2007). Na147 clusters are excited with two identical 800 nm, 25 fs and
I = 8× 1012 W/cm2 pulses. The second pulse is resonant to the surface plasmon. (a)
differential current of electrons emitted in a cone Ω = 0, 2π as function of energy and
time; (b) Schematics of SPARC. From (Fennel et al. 2007).

A similar effect has been observed by Taguchi et al. (2004) in PIC simulations of
much larger Ar clusters, up to 38 nm in diameter. In an analogy to Brunel heating
(Brunel 1987), they were able to derive a size dependent scaling law for the laser
intensity at the onset of strong absorption.

Mulser et al. (2005) have focused on nonlinear collective phenomena. They consid-
ered the electron cloud as a hard sphere of not necessarily identical total charge and
size as the ionic one. For large deviations of the electron sphere from equilibrium the
restoring potential is no longer harmonic but turns into a Coulombic one. Oscillation
frequency decreases here with total energy that is, with the amplitude of the motion.
For sufficiently high field strengths (I = 6.78× 1017 W/cm2), the electron cloud is
pulled out just enough that the oscillation frequency is equal to that of the laser. The
energy absorption increases by 5 orders of magnitude. The harmonic oscillator model
for the surface plasmon ω0 = ωp/

√
3 yields here zero absorption.

At intensities of 1× 1018 W/cm2, such as those where Mulser et al. find resonant
behavior, all atoms are ionized within the first half cycle of the leading edge. The
laser field is much stronger than the field of the ions, such that it drives the electron
cloud as if it were frozen.

Schroeder et al. (1998) have performed experiments under similar conditions, but
with much smaller Xe13 clusters and with two different laser systems: a Ti:Sa laser at
800 nm generating T = 90 fs pulses with I = 2× 1018 W/cm2 and a KrF∗ system at
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248 nm, with T = 270 fs and I = 1× 1019 W/cm2. Surprisingly, the X-ray yield was
enhanced by a factor of 3000 with the UV laser over the IR one. At the intensities
employed here, all six 5p electrons of Xe are field ionized within the first half cycle of
the leading edge. The electron cloud is removed as a whole from the cluster and then
driven back a half cycle later with Ecoll = 20 keV in the IR field or Ecoll = 10 keV
in UV. The re-colliding electrons can ionize core electrons, leading to emission of
characteristic X-rays. However, the excursion of the electron cloud outside the cluster
is roughly 20 times larger in the IR field due to the much larger ponderomotive
amplitude. It can collide against neighboring clusters, such that its return probability
can be more than 500 times smaller. Moreover, the excursion time is larger due to the
3 times longer period, which allows the electron cloud to expand more. The current
density of the re-colliding cloud is thus decreased by at least a factor of 9. At the
same time, the Lorentz force in the IR field deviates the cloud by at least 5 cluster
radii, such that it misses the cluster upon return. Adding up, the IR proves to be
less efficient in driving the re-collision, even though the re-collision energy is twice as
large as with the UV field and should produce in principle much higher X-ray yields.

To summarize, the high local density of atomic clusters lowers the potential bar-
rier between neighboring ions, increasing the probability for ionization, be it tunnel-
ionization or single-photon absorption. It can also have the counter effect, by in-
creasing the probability of resonant tunneling, as shown in Fig. 2.5 at the decrease
of photon absorption rate in the X-ray domain. The finite size increases the surface
to volume ratio, which favors surface effects such as Mie resonance or Brunel heat-
ing over bulk ones, like the volume plasmon excitation. It enables at the same time
various resonance appearances, which are all linked to the ability of selected, or all
electrons to traverse the whole cluster without collision in a single half cycle.
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Chapter 3

Experiments with clusters in the
field of a free electron laser

Although based on the same principle as the synchrotron, the free electrons laser
achieves its spectacular properties by using the radiation generated by relativistic
electrons in a single pass, as shown in Fig. 3.1 (Feldhaus et al. 2005). In a synchrotron,
the electron beam is reused millions of times per second before being dumped. The
quality of the beam decreases in every pass due to the recoil momentum of the emitted
photons, down to a level where it can no longer be corrected by the magnetic fields.

laser driven
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bunch
compressor

superconducting accelerator modules
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Figure 3.1: Schematic layout of the VUV-FEL at DESY, Hamburg. From Altarelli
et al. (2006).

In 2001, the testing facility of the FEL in Hamburg obtained lasing in the range
80− 120 nm. Figure 3.2 shows time of flight spectra of Xenon clusters irradiated
with 100 fs, I = 2× 1013 W/cm2 pulses at 98 nm (12.65 eV) (Wabnitz et al. 2002).
With Xenon gas, whose ionization potential Eip = 12.1 eV is just slightly less than
the photon energy, isolated atoms were photo-ionized and only singly charged ions
have been observed1. Clusters have shown higher charges, reaching 8 fold ionization
with N = 30, 000. As shown in the inset, 2.5 keV fast ions have been detected with
N ≈ 1500 clusters. A total absorption of 450 eV, or almost 40 photons per atoms has

1Additional experiments with a more sensitive MCP detector have shown charges as high as
Xe6+ already at I = 1.3× 1013 W/cm2. These will be discussed in the following. It should noted
for the moment that the two-photon ionization rate of Xe+ is very low, roughly 25 times lower than
single-photon ionization rate of neutral Xe.
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been measured with N = 2500 clusters, in very high contrast with the single photon
absorption of isolated atoms.

30,000N

Time of flight (ns)
400

Figure 3.2: TOF mass spectra of Xe clusters of variable sizes exposed to 100fs FEL
laser pulses at 98nm (12.65eV) and I = 2× 1013W/cm2 power density. Inset: kinetic
energy of ions from N ≈ 1500 clusters as function of their charge. From Wabnitz
et al. (2002).

These results were not dependent on the electronic structure of the cluster. Further
experiments were performed on Ar clusters, where the FEL was tuned in resonance
either to the surface exciton at 105 nm, or to the bulk exciton at 100.5 nm or simply
off-resonant at 96.6 nm. Figure 3.3(left) depicts the absorption spectrum of Ar800

clusters along with the three employed wavelengths of the FEL. The right hand side
of Figure 3.3 shows the TOF spectra for these frequencies, at low intensity (I =
1.9× 1011 W/cm2) in the lower panel and high intensity (I = 1.5× 1013 W/cm2) in
the upper one. In the latter case, where the intensity was similar to the Xe cluster
experiment described above, the spectra show no difference at all. Moreover, the
clusters were determined to disintegrate completely already at I = 1.8× 1012 W/cm2

for all frequencies. With resonant excitation the threshold was 4 times lower, namely
slightly above 4× 1011 W/cm2. The lower threshold can be easily understood when
considering the lower right panel of Fig. 3.3 for the low intensity regime. The spectrum
for off-resonant excitation is dominated by singly charged ions and cluster fragments,
such as dimers and trimers. With resonant excitation, the fragment signal weakens
and higher charged ions such as Ar2+ appear instead.

That clusters behave identically at all frequencies for power densities beyond
1.8× 1012 W/cm2 indicates that energy absorption in this intensity regime is mostly
due to plasma heating and that photo-ionization has already saturated early in the
pulse, for both resonant and non-resonant photon absorption.
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Figure 3.3: Left: Photo-absorption spectrum of Ar800 clusters. The FEL radiation
wavelength was tuned to surface (λ = 105 nm) and bulk excitons (λ = 100.8 nm), as
well as off resonant (λ = 96.6 nm). Right: TOF mass spectra of Ar900 clusters at these
three FEL wavelengths for I = 1.5 × 1013W/cm2 (top) and I = 1.9× 1011 W/cm2

(bottom). From Laarmann et al. (2004).

The surprise of the high energy absorption lies in the ponderomotive amplitude
xp and energy Up, shown in Table 2.2 in the previous chapter. With IR radiation
xp is at least comparable, if not larger than the size of the cluster and Up can reach
the order of keV. The electrons are swept back and forth through the whole cluster,
which explains the violence of the experiments summarized previously. On the other
hand, at already 8 times shorter wavelength, as in these experiments, xp is less than
the mean radius of a Xe valence orbital, while Up is negligible on the order of meV.

The findings have sparked theoretical investigations in several groups (Bauer 2004;
Georgescu et al. 2007a; Jungreuthmayer et al. 2005; Rusek and Orlowski 2005; Santra
and Greene 2003; Siedschlag and Rost 2004). All of them have identified inverse
bremsstrahlung (IBS) as the main absorption mechanism, but disagree strongly with
respect to the origin of its efficiency.
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Figure 3.4: Inner-ionization in a cluster. The Hamburg experiment showed that two-
photon ionization is much less probable with respect to single-photon absorption.
This favors inner ionization, where electrons can be excited from atomic bound states
into cluster states by absorption of a single photon. From Siedschlag and Rost (2004).
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The ansatz of Siedschlag and Rost (2004) employs the concept of inner-ionization
depicted in Figure 3.4. Single-photon ionization of all atoms in the cluster occurs
within less than 1 fs. Due to the small distance between the cluster ions, the Coulomb
potential is bend so strongly, that further single photon absorption can promote bound
electrons into so called inner-ionized cluster states. They are bound with respect to
the cluster, but delocalized with respect to the mother atom. The mechanism is very
efficient due to the linear increase of the ionization potentials of the rare gas atoms,
shown in Figure 3.5. The barrier lowering is proportional to the charge of the atoms,
but so does the ionization potential. If the first step is energetically possible, than
all of them are until a jump of Eip is encountered, corresponding to a stronger bound
next sub-shell. This leads to 8 fold ionization of all atoms in the cluster within a very
short time. Efficient IBS is obtained due to the large number of electrons performing
small oscillations with the laser field while scattering against highly charged ions.
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Figure 3.5: Ionization potentials of Ne, Ar, Kr, Xe and their ions.

At the other end, Santra and Greene (2003) introduced a more accurate atomic
potential, which allows the electron to feel the full charge of the nucleus as it pen-
etrates the electron cloud. They observe strong scattering of the electrons in this
potential, which enhances IBS absorption over scattering in the pure Coulomb poten-
tial by a factor of 20. The average transient charge of the cluster ions is only Xe2+.
They also considered plasma effects in form of Debye screening.

Two-photon ionization has been initially ruled out by all models on ground of the
experimental results shown in Figure 3.2. Evaluation of further data (Laarmann et al.
2004) obtained in different runs with different FEL parameters and a more sensitive
MCP detector have shown another picture. Xe2+, even Xe3+ charge states appear for
power densities as low as 2× 1012 W/cm2, and Xe6+ already at 1.3× 1013 W/cm2.
Xe+ saturates at < 1× 1012 W/cm2 for the same pulse length. Santra and Greene
(2004) have performed calculations on multi-photon ionization of Xe and its ions at
12.7 eV. Although they find a Xe+:Xe2+ ratio of roughly 2:1 at the end of the pulse,
it should be noted that for I = 7× 1013 W/cm2 Xe+ saturates already in 0.5 fs if one
considers the experimental cross-section σ1(Xe) = 65 Mb (Chan et al. 1992; Samson
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and Stolte 2002). The authors overestimated this cross-section by a factor of two.
That a considerable amount still exists at the end of the 50 fs long pulse, speaks for
a very low Xe2+ production rate. With σ2(Xe+) = 4.5× 10−49 cm4s, the ionization
rates σ1I/ω and respectively σ2(I/ω2) stay in a ratio of 25:1 at I = 7× 1013 W/cm2.

The combination of photon energy and ponderomotive amplitude make VUV radi-
ation unique. With IR fields, photo-electrons are placed in the continuum with little
to zero momentum, because they are created by multi-photon or tunnel ionization.
Due to the strong coupling, they are accelerated to several eV within just one laser
period. With X-rays, electrons have high momentum from the beginning due to the
large photon energy. They no longer interact with the light field once they are in the
continuum. The VUV range is just at the cross-over. The photo-electrons are slow,
because the photon energy is slightly higher than the ionization potential Eip, and
the interaction with light after ionization is very weak. The electrons form a dense,
warm plasma, which screens the cluster ions and modifies their atomic properties,
such as ionization potential or photo-ionization cross-section.

This work extends the hybrid quantum-classical description employed by Sied-
schlag and Rost and puts emphasis on the description of atomic structure and plasma
environment, which modifies the former through screening. Moreover, a probe method
with attosecond XUV laser pulses will be presented in Chapter 6, which could shed
more light on the variety of absorption mechanisms proposed so far.
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Chapter 4

Clusters under strong VUV pulses:
A quantum-classical hybrid
description incorporating plasma
effects

Hybrid quantum-classical approaches to laser cluster interaction have proved very
powerful when the cluster dynamics is dominated by plasma effects and is not influ-
enced by the electronic structure of the cluster, as in the previously described exper-
iment. In the spirit of the three step-model, photo-ionization is dealt with quantum-
mechanically through ionization rates, whereas the ionized particles are propagated
classically by solving Newton’s equations. Such approaches have been employed by
many groups (Ditmire et al. 1998; Jungreuthmayer et al. 2005; Last and Jortner 1999;
Rose-Petruck et al. 1997; Saalmann and Rost 2003; Siedschlag and Rost 2002) because
they have the great advantage to scale to very large systems and to consider electron
correlation effects exactly in the plasma dynamics. Quantum-mechanical approaches
are limited to small systems, and, as employed for example by Santra and Greene
(2003), Walters et al. (2006) or Krainov (2000), do not consider electron correlation
for the dynamics of the inner-ionized electrons.

As outlined in the previous chapter, the VUV interaction regime is unique due
to screening effects. At the cross-over between the IR and the X-ray regime, the
photo-electrons are both slow and interact weakly with the laser field after ionization.
They form a dense, warm plasma and localize about the ions, modifying their atomic
properties such as ionization potentials and cross-sections. But exactly these electrons
define a time scale, suitable to formulate a coarse grained dynamics in the cluster. It
allows us to include those processes which in our approach lie at the interface between
quantum and classical mechanics, such as the influence of the surrounding classical
charged particles (ions and electrons) on the photo-ionization rate of bound quantum
electrons.

We will address here the photo-ionization of many-electron atoms in a cluster
environment. Starting from the isolated atom, we will consider the lowering of the
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ionization threshold through neighboring ions, then identify those electrons which
localize about the ions, effectively screening them. The ionization potential and
photo-ionization cross-section of screened bound electrons will be introduced. The
last section will address the classical propagation of electrons and ions, with emphasis
on the model potentials used to avoid the Coulomb singularity at the interaction of
charged particles. This was not an issue in the IR-regime because the ponderomotive
amplitude xp was much larger than the spatial extent of the atoms, where the non-
singular approximations deviate from the Coulomb potential. In the VUV regime, xp

is much smaller than the atom, such that the electron motion is sensitive to the exact
shape of these potentials, and an examination of the implications is needed.

The model will be illustrated in the next chapter at the example of Ar147 under
VUV radiation similar to the one available at FLASH, in Hamburg (Ayvazyan et al.
2002a, 2006; Wabnitz et al. 2002).

4.1 Photo-ionization into the cluster

4.1.1 Photo-ionization of a single cluster atom

Considering the initial and final configurations of a photo-absorption process, we
do not resolve the full level splittings, but instead average over all allowed transitions,
as sketched in Fig. 4.1.
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Figure 4.1: Average over all allowed transitions between two configurations, in this
case sp and pp. The average transition energy is not simply the difference of the
configuration-average or center-of-gravity energies because many transitions are not
allowed in the dipole approximation.

The transition cross-section is obtained by summing over all allowed final states
and taking the mean over all initial states. The mean of the transition energies will
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be taken as the effective transition energy.
In the independent-particle model, the electrons move in a self-consistent, spheri-

cally symmetric potential without interacting with each other. The angular momenta
are thus constants of motion and the one-electron wave function is an eigenfunction
of l2i , lzi , s2 and szi

ϕi(ri) =
1

r
φnili(ri) ·Ylimi(θi, φi) ·σmsi . (4.1)

The total wave function |Ψ〉 of the atom is constructed by coupling and anti-symmetrization
of the product wave functions

∏
i |ϕi〉.

This work will mainly use conventions and techniques from R.D. Cowan’s The-
ory of atomic structure and spectra (Cowan 1981), which is also accompanied by a
powerful Hartree-Fock code provided at ftp://aphysics.lanl.gov/pub/cowan.

Coupling and anti-symmetrization are performed by means of the coefficient of
fractional parentage, or cfp technique (Cowan 1981, §9-5, 9-8). φnili are then deter-
mined numerically from the Hartree-Fock equations by minimizing the configuration-
average energy

Eav =

∑
b〈Ψb|H|Ψb〉∑

b

(4.2)

under the constraint of the orthogonality of φniliˆ ∞
0

φnl(r)φn′l(r)dr = δnn′ . (4.3)

The summation in (4.2) runs over all basis functions of the configuration in question.
One could also minimize the energy of each eigenstate of the given configuration,

but that would involve too much a numerical effort. Instead, one evaluates the radial
component φnili first and then recomputes the expectation value of the Hamiltonian
for each of the eigenstates, leading to correlation, exchange, spin-orbit and Zeeman
corrections, as the electron-electron, spin-spin, spin-orbit and magnetic interactions
are taken into account.

The photo-ionization cross-section is given by

σph = 4π2α~ω|〈γ′J ′M ′|ε̂0
∑
i

ri|γJM〉|2 (4.4)

with anti-symmetrized many-electron initial and final states, | γJM〉 and | γ′J ′M ′〉
respectively (Cowan 1981; Friedrich 2006). J is the total angular momentum and
M its magnetic quantum number. γ represents the set of all other good internal
quantum numbers of the atom.

Summing over all final states and averaging over all initial ones∑
γJ,γ′J ′(2J + 1)σph(γ, J ; γ′J ′)∑

γJ(2J + 1)
(4.5)

leads to (see Appendix A for the full derivation)

σ`(ω) =
wi
3

4π2αω

2`+ 1
[(`+ 1)d2

r(`, `+ 1) + `d2
r(`, `− 1)]. (4.6)

ftp://aphysics.lanl.gov/pub/cowan
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wi is the occupation number of the initial orbital i and dr(`, `
′) is the radial dipole

matrix element

dr(`, `
′) =

ˆ ∞
0

φn`(r) r φn′`′(r)dr . (4.7)

The average transition energy is computed in a similar manner

∆Ei→f =

∑
γJ→γ′J ′(2J + 1)(E(γ′J ′)− E(γJ))∑

γJ.γ′J ′(2J + 1)
. (4.8)

In contrast to (4.5), the denominator also includes the additional sum over γ′J ′. The
average transition cross-section performs a sum over all final states, the transition
energy involves their average.

It should be noted that (4.8) is not equivalent to the difference of the configuration-
average energies (4.2)

∆Eav =

∑
γ′J ′(2J

′ + 1)E(γ′J ′)∑
γ′J ′(2J

′ + 1)
−
∑

γJ(2J + 1)E(γJ)∑
γJ(2J + 1)

. (4.9)

On the one hand, most of the levels are not included in the allowed transitions array.
On the other hand, the final energies E(γ′J ′) do not enter the Eq. (4.8) with their
full multiplicity 2J ′ + 1 due to the limitations imposed by the dipole transition rules
M ′ −M = 0,±1.

The neighboring ions in the cluster lower the ionization threshold. What was a
discrete photo-excitation for an isolated atom becomes at the same photon energy
photo-ionization into the cluster. We define a continuous absorption cross-section in
the discrete region of the spectrum by distributing the oscillator strength fn of each
spectral line onto the corresponding energy interval,

σn(ω) =
2παfn

(En+1 − En−1)/2
. (4.10)

n is here simply an index of the average spectral lines γJ − γ′J ′ which start from
the ground state γJ . We demand at the same time that the renormalized photo-
excitation cross-section merges into the photo-ionization cross-section at threshold.
This is confirmed in Fig. 4.2, where the continuous line shows the result of (4.10) for
Ar.

Fig. 4.2 also shows a comparison with two other approximations for the photo-
absorption cross-section. The first one belongs to Rost (1995) and gives the photo-
ionization cross-section of a single-electron atom mainly as a function of its radial
wave function at r = ω−1/2

σ(ω) =
2π2αZ2

√
l + 1

3ω5/2
|φnl(r =

√
l + 1

ω
)|2, (4.11)

which for a 1s wave function φ1s = 2β3/2e−βr with the effective charge β becomes

σβ(ω) =
8π2αZ2β3

3ω7/2
e−2β/

√
ω. (4.12)
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Figure 4.2: Comparison of several approximations of the photo-absorption cross-
section. Full line: (4.10). The discrete spectrum has been calculated up to the
final principal quantum number n′ = 16. The energy of the outgoing electron in
the continuous part of the spectrum starts at 1.5 eV above threshold; dotted line:
lower bound of the cross-section when ionizing into the cluster, as described in (4.14);
dashed line: (4.12); dash-dotted line: (4.13).

Eq. (4.11) and (4.12) can be generalized to N -electrons. For the uncorrelated ground
state of He, it leads to the simple relation σ(ω) = 2σβ(ω).

The second ansatz is again a hydrogenic one and was introduced for bound-bound
or bound-free transitions of slow electrons, that is, electrons of either high principal
quantum number n or low asymptotic momentum k (Zel’dovich and Raizer 1966,
V.§12), (Cowan 1981, §14-14), (Bethe and Edwin 1977, §71)

σ(n)(ω) =
32πα

3
√

3
· Eip(n)2

nω3
, (4.13)

where Eip(n) is the ionization potential of the state to be ionized.
For the comparison we have multiplied both (4.12) and (4.13) by the occupation

number wi of the initial orbital. In (4.12) we have set Z = 18 and the effective
charge β was related to the ionization potential β =

√
2n2Eip(n). σβ(ω) of Eq. (4.12)

and σn(ω) from (4.10) show good agreement at the asymptotes. For medium energies,
(4.10) shows the well known Cooper effect, an interference effect which is not included
in (4.12).
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Special care needs to be taken in case of the renormalization (4.10) for the first
spectral line above the ionization threshold, nthr. The corresponding energy interval
extends then from the threshold itself to the next higher spectral line nthr + 1

σnthr
(ω) =

2παfnthr

(Enthr+1 + Enthr
)/2− Ethr

. (4.14)

As will be shown later, Ethr is influenced strongly by the cluster environment and
can fluctuate in quite a wide range. The dotted line in Fig. 4.2 marks the lower
bound of the renormalized photo-ionization cross-section for the case of the lowest
possible threshold, corresponding to the widest energy range the oscillator strength
can distributed onto.

4.1.2 Identification of localized electrons

Once an electron absorbed a photon, it is propagated classically in the field of
the laser and of the other charged particles. For the given photon energies (10 eV <
~ω < 30 eV) and ionization potentials (10 eV < Eip < 20 eV), the generated photo-
electrons are slow and redistribute the energy among each other quickly. A simple
estimation using Spitzer’s self-collision time (Spitzer 1962, §5.3)

tc =
v2

〈(∆v⊥)2〉
=

(3kBT )3/2

4πne{erf(
√

1.5)−G(
√

1.5)} log
(

9k3
BT

3

4πne

) (4.15)

yields a thermalization time on the order of 0.8 fs. The Debye length λD =
√
kBT/4πne

was chosen for the upper limit of the Coulomb logarithm and the temperature was set
according to the average kinetic energy of the electrons, assuming that every second
atom would be ionized once instantaneously, that is 3kBT = 2Ekin ≈ 2~ω. erf(x) is
the error function and G(x) is defined as

G(x) =
erf(x)− x erf ′(x)

2x2
(4.16)

The very fast thermalization of the cluster plasma will be confirmed in the next
chapter, Sec. 5.1, by means of molecular dynamics simulations. It should be noted
though that tc describes the energy redistribution about the average particle energy
(MacDonald et al. 1957). 〈(∆v⊥)2〉 is a diffusion coefficient in velocity space (Chan-
drasekhar 1943). By definition, tc represents therefore the time needed by a particle
of the average kinetic energy of a Maxwellian plasma to be deflected by an angle of
90◦ and change its energy by 100%. Further on, it can take up to 10tc until the higher
tail of the Maxwell distribution is filled (MacDonald et al. 1957).

We are interested in the lower part of the single particle distribution function,
because these electrons will localize about the ions, being in effectively excited states
about them and screening the bound electrons. In order to find these electrons we
trace the revolution angle φjαj of each electron j around the closest ion jα. Whenever

jα changes, φjαj is reset to zero. Should φjαj become larger than φ0 = 4π, so is the
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electron localized about the ion. The choice φ0 = 4π is motivated by Fig. 4.3. It shows
the energy of each electron in the system with respect to its closest ion against the
angle it has revolved about that ion. For all time instants, one can clearly identify
a region of small revolution angles and rather high energies and a region of very
large revolution angles and low energies. The former can be attributed to delocalized
electrons, which visit many ions, while the latter corresponds to localized electrons,
which spend a lot of time, or revolutions, about a single ion. The separation is at
roughly 3π, for safety reasons we set φ0 = 4π.
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Figure 4.3: Electron energy with respect to the closest ion against the angle of revo-
lution around that ion. Extracted from the simulation of a Xe147 cluster exposed to
a 100 fs, ~ω = 12.7 eV and I = 7× 1013 W/cm2.

To support our localization criterion, we plot in Fig. 4.4 the electron energy against
the position in the cluster and color code the localization status according to the new
criterion. Red for localized electrons, green for delocalized electrons. All electrons
which find themselves inside a cylinder of Wigner-Saitz radius along the longest axis of
the cluster have been collected from 40 independent realizations. The blue line shows
the potential landscape in the cluster averaged over these realizations according to
the method described in Appendix B. A clear separation line between the red and the
green region can be observed, running parallel to the saddle points of the averaged
potential.

Knowing that there a lot of electrons performing many rotations around the same
ion, we can consider the mechanisms, or the interactions inside the cluster nano-
plasma from a different perspective. The localized electrons are effectively in excited,
or Rydberg states about the ions. These ions, together with the localized electrons
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Figure 4.4: Electron total energy against position in cluster for the same situation
as in Fig. 4.3. The localization status according to the revolution angle about the
closest ion is color coded: red for localized, green otherwise. Visible are all electrons
within a cylinder along the longest collinear chain of atoms in the cluster and with a
radius equal to the Wigner-Saitz radius.

on Rydberg orbits are embedded in a low density, delocalized electron plasma with
which they stay in thermal equilibrium.

The mean revolution period of the localized electrons sets the time scale for a
coarse-grained dynamics. With an initial guess T0 = 1 fs, we update Ti+1 at time
ti =

∑i
j=0 Tj according to the general sequel

T̄i+1 =
1

N

∑
j

2π

φjαj (Ti)
Ti , (4.17)

where φjαj (Ti) is the revolution angle completed by the electron during the last interval
Ti. We also add one standard deviation σi+1 to make sure most of the localized
electrons have made a full revolution

Ti+1 = T̄i+1 + σi+1. (4.18)

The time intervals Ti defined by the localized electrons play a crucial role in the
description of the entire cluster dynamics. They provide a natural time scale to
interpolate between the quantum-mechanical, rate based description of the ionization
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process and the classical, fully deterministic treatment of the ionized electrons. Over
the time interval ti < t < ti + Ti+1 all processes involving quantum rates will be
considered within a fixed cluster environment, whose properties have been averaged
over the previous time interval [ti − Ti, ti).
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Figure 4.5: Intervals Ti as in Eq. (4.18). Left: small time scale, comparable with
the laser pulse. Right: long time scale. The dots show single revolution periods
T jα . With the increasing inter-ionic distance, very large orbits with large revolution
periods become possible.

The evolution of the time intervals Ti is shown in Fig. 4.5. With the disintegration
of the cluster, very wide revolution orbits are possible due to the increasing inter-ionic
distance. These orbits have very large revolution periods, thus increasing the overall
Ti. They will not enter Eq. (4.17) when Ti+1 is computed because they will not
have yet completed a full revolution, but will be considered for Ti+2 or later. These
lead to very large fluctuations of Ti, meaning again that some of the orbits will be
alternatively over- and under weighted in (4.17). For this reason we also keep track of
the last revolution period T jαprev of each electron and use it in Eq.(4.17) if the electron is
localized until it has completed a new full revolution, that is φjα(Ti+Ti+1+. . .) >= 2π.
T jα is then updated to the new value.

With the localized electrons in excited states about the ions, the next two sections
will deal with the ionization potential and the photo-ionization cross-section of a core
electron in the presence of Rydberg electrons, respectively.

4.1.3 Equivalent configurations

We keep record of the number of electrons nα localized about each ion α and
average their total energy over the time intervals Ti

E∗α = E(qα) +
nα∑
j=1

(
p2
j

2
− qαv(j, α)

)
+

nα∑
j>k=1

v(j, k) . (4.19)

E(qα) is the center of gravity ground state energy Eav (4.2) of ion α. v(j, k) is for the
moment a generic potential describing the interaction between charged particles. It
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is finite at origin, but turns into a Coulomb potential as quickly as possible. Explicit
shapes will be discussed in Section 4.2.

We set E∗α equal to the energy of some multiply excited ion of the same total
effective charge qeff

α , as shown in the lower left of Fig. 4.6

qeff
α = qα − nα . (4.20)

The ionization potential of a core electron in this situation is the energy difference
between the final state, where the active electron is missing (upper left), and the
current state. To simplify the calculations we introduce the equivalent configuration
of the ion on the right column of Figure 4.6. It has the same total energy, but all
excited electrons except one are relaxed onto the last occupied orbital. The remaining
electron is then “raised” on an even higher Rydberg state, to keep the total energy
constant.

Figure 4.6: Construction of the equivalent configuration for two ions, 3s23p1 and
respectively 3s13p1, with three localized (red) electrons each. The open circles denote
holes.

We assume that neither the principal quantum number n, nor the angular mo-
mentum ` of the spectator Rydberg electron change during ionization from a deeper
orbital. The ionization potential Eip is then given by

Eip(Cq, n`) = E(Cq+1, n`)− E(Cq, n`) (4.21)

where E(Cq, n`) represents the total energy of a q-fold charged ion with orbital con-
figuration Cq. An electron of Cq is on a Rydberg orbit n`.

Fig. 4.7 shows E(Cq, n`) against the principal quantum number n for several
charge states of Ar and ` = 0, 1 and 2, respectively. Given the total energy E∗α,
we identify a possible initial configuration (Cq, n`). With the previous assumption,
n and ` do not change during ionization of a deeper orbital, any ionization process
from such an orbital is just a vertical jump to the curve of the final configuration
(Cq+1, n`). The energy difference is the ionization potential.
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Figure 4.7: The total energy E(Cq, n) for several Arq+ ions with one electron in a
Rydberg state of principal quantum number n and ` = 1 (circles), as calculated with
Cowan’s HF code (Cowan 1981). Full line: the quantum-defect fits according to
Eq. (4.22). The dashed vertical line shows the ionization of an s electron from an
equivalent configuration of total energy E∗ as defined in Eq. (4.19). E∗ip denotes the

ionization potential (4.21), (4.26).

For finite values of n, E(Cq, n`) can be approximated by a quantum defect formula
(Bransden and Joachain 2003)

E(Cq, n`) = E(Cq,∞)− 1

2

(
Zeff(q, `)

n− µq,`

)2

, (4.22)

where E(Cq,∞) does not depend on ` and Zeff(q, `) is defined over the ionization
potential Eip(Cq, n``) of the lowest ` state n`

Zeff(q, `) = (n` − µq,`)
√

2 ·Eip(Cq, n``)

= (n` − µq,`)
√

2[E(Cq,∞)− E(Cq, n``)] .
(4.23)

For the argon configurations depicted in Fig. 4.7, n` = 4 for ` = 0 and n` = 3
otherwise. µq,` is a free parameter in these expressions, which has been fitted for best
agreement of Eq.(4.22) with the Hartree-Fock energies shown in Fig. 4.7. The result
of the fits is represented there by the lines connecting the data points. The quantum
defect approximation is thus very accurate at intermediate n, where we need it. The
following table summarizes the fit parameters µq,` for those configurations shown in
Fig. 4.7
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q ` = 0 ` = 1 ` = 2

3s23p5 n` 0 2.25 2.26 0.072
3s23p4 n` 1 1.82 1.81 0.65
3s23p3 n` 2 1.51 1.47 0.70
3s23p2 n` 3 1.26 1.20 0.59
3s13p3 n` 3 1.25 1.17 0.62
3s23p1 n` 4 1.05 0.98 0.45

µq,` is very low for d states, which do not penetrate the core much due to the
centrifugal barrier. It is also mostly dependent on q and less on the detailed structure
of the core, as 3s23p2n` and 3s13p3n`, both with q = 3 show. The quantum defect
is much smaller with higher charge states, but changes relatively little over a single
ionization step ∆q = 1 if `, the angular momentum of the spectator Rydberg electron
does not change. Let us assume µq,` stays constant across one ionization step. Insert-
ing the quantum defect approximation (4.22) for both Cq and Cq+1, the initial and
respectively the final configurations in (4.21), one obtains a simple equation system

E∗ip(Cq) ≡ Eip(Cq, n) = E(Cq+1,∞)− E(Cq+1,∞)− E(Cq+1, n0)

(n− µq)2
− E∗α

E∗α = E(Cq,∞)− E(Cq,∞)− E(Cq, n0)

(n− µq)2
,

(4.24)

where we assumed that the energy of the initial state is known E(Cq, n`) = E∗α.
(n− µq,`) can be fully eliminated

E∗ip(Cq) = [E(Cq+1,∞)− E∗]− Eip(Cq+1, `)

Eip(Cq, `)
[E(Cq,∞)− E∗] . (4.25)

The dependence on ` persists in the ionization potentials Eip(Cq, `) = E(Cq,∞)−
E(Cq, n``). For low charge states, such as 3s23p5n` or 3s23p4n`, hardly any configura-
tion other than ` = 1 is possible. For higher charges, Eq. (4.25) yields similar results
for all `, which is also the optical impression of Fig. 4.7. We choose therefore ` = 1
for these particular cases and generally, ` will be set equal to the angular momentum
of the ground state of Cq, such as 3s2 for C6. Eq. (4.25) becomes

E∗ip(Cq) = [E(Cq+1,∞)− E∗]− Eip(Cq+1)

Eip(Cq)
[E(Cq,∞)− E∗] , (4.26)

where Eip(Cq) is the ionization potential of the ground state Cq. Eq. (4.26) does
not depend on n or ` anymore. It is a simple interpolation between the ionization
potential of Cq and the ionization potential of Cq+1, with E∗α as the interpolation key.

4.1.4 Over-barrier inner-ionization

We have so far separated the cluster environment in localized and delocalized
electrons and ions. The localized electrons define the time intervals Ti and have been
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mapped, together with their respective ions, to effective excited ions. The charge of
an effective ion is the charge of the ion minus the number of localized electrons. The
lowering of the ionization threshold in the cluster due to neighboring ions, as sketched
before in Fig. 2.4 for a simple three ion scenario, will now be taken a step further to
the effective ions.

Following the conclusion of the Sec. 4.1.2, we will evaluate the average charge dis-
tribution in the cluster over the time intervals Ti, to determine the potential landscape
and thus the threshold for inner ionization. The delocalized electrons are recorded as
such, the localized ones are counted together with the ions they are localized about
by means of the effective charge qeff

α . The charge distribution is recorded on a grid
which is resized automatically to keep up with the cluster expansion. The spacing is
chosen such, that there are 8 points between the closest two atoms. At the end of Ti,
the potential is computed by a convolution method presented in Appendix B. The
charge distribution is then reinitialized to zero and the calculated potential is used
throughout Ti+1.

The energy balance for an electron to be photo-ionized reads

Ei + Vi + ~ω = Ef + Vf , (4.27)

with the initial and final local contributions from the mother ion

Ei = −E∗ip, Ef = Ekin − (qeff
α + 1)v(α, bar), (4.28)

and the time averaged cluster contributions

Vi =
∑
j 6=α

qjv(j, α), Vf =
∑
j 6=α

qjv(j, bar) . (4.29)

Index j runs over all delocalized electrons and all ions but ion α. E∗ip is the
ionization potential (4.26), and v(i, j) is the interaction potential (4.42) between two
particles at ri and rj, respectively. Vi is the potential created by all other particles at
the position of atom α, Vf is the same potential at threshold, as shown in Fig. 4.8.
Letting Ekin = 0 in (4.27) and (4.28) leads to the amount of energy needed to ionize
an electron bound to a screened atom into the cluster

Eeff
ip = E∗ip − (qeff

α + 1)v(α, bar) + Vf − Vi. (4.30)

The position rbar of the barrier is determined by the lowest saddle point of Vf (r) −
(qeff
α + 1)v(α, r)

∂

∂r

[
Vf (r)− (qeff

α + 1)v(α, r)
]

= 0 (4.31)

It should be noted that the grid based calculation returns the full cluster potential
V (r), which also includes the contribution of the parent ion α. Eqs. (4.30) and (4.31)
become in this case

Eeff
ip = E∗ip + {V (rbar)− v(α, bar)} − {V (rα)− qeff

α v(0)} (4.32)

∂

∂r

[
V (r)− v(α, r)

]
= 0 , (4.33)
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Figure 4.8: Sketch of the energy balance for the photo-ionization of a cluster ion α.
The cluster potential is symbolized by a single neighboring ion. The thick full line
indicates the full cluster potential, the thin long dashed line represents the cluster
environment, i.e. the cluster potential without the contribution from the ion itself.
The dotted line is the Coulomb potential for qeff

α + 1, i.e. the field of the ion if the
electron would be ionized. The interaction of the bound electron with the nucleus is
represented by E∗ip.

where the self-interaction has been subtracted from the total potential to obtain Vi.
For Vf one additional nuclear charge had to be added.

The solutions of Eq. 4.33 are located each between the ion α and one of the next
neighbors. It is therefore sufficient to look for a maximum of V (r) − v(α, r) along
each of these directions. The lowest maximum is chosen as the ionization threshold.
The maximization problem is solved with a golden section algorithm (GSL 2007).

4.1.5 Effective cross-section for inner ionization

In the mapping procedure presented so far, the radial component of the screened,
therefore delocalized, atomic orbitals was stated in terms of the unscreened, delocal-
ized orbitals of the equivalent configuration. The former is induced by the cluster
environment, whereas the latter is inherent in the mutual repulsion of the larger
number of bound electrons. One may speak, in this context, of a projection of the
screened wave function onto a delocalized, unscreened basis set.

We can now take advantage of Eq. (4.6). In the new “basis”, the radial dipole
matrix elements (4.7) are already available in the form of the photo-ionization cross-
section of the equivalent configuration. It is only needed to replace the multiplicity
wi in Eq.(4.6) by the number of the actually active, quantum bound electrons (black
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electrons in Fig. 4.6)

σscr(q) =
wact

weqv

σ(qeqv) (4.34)

4.2 Classical propagation of charged particles

The ionization cross-section is evaluated for each atom j in the cluster in each
time step. Then, in Monte-Carlo manner, the ionization probability for the current
time step δt is computed

wj(i→ f) =
I

8παω
σj · δt (4.35)

and compared to a random number x uniformly distributed in the range [0, 1). I(t) is
the instantaneous laser intensity, α the fine structure constant, ω the photon energy
and σj the ionization cross-section computed in the previous section. If wj(i→ f) >
x, then the charge of the ion is increased by +1 and an electron with the asymptotic
kinetic energy

Ekin = ~ω − Eip(j) (4.36)

is created. From now on, it is propagated classically in the field of the laser and of
the other electrons and ions in the system. The direction of the initial momentum
is random. As already estimated in Section 4.1.2, the electron plasma thermalizes
quickly, erasing any anisotropy of the initial angular distribution (Sec. 5.1).

The following two parts will deal with the choice of the model interaction potential
and the force computation methods, respectively.

4.2.1 Non-singular approximations of the Coulomb potential

A main concern in molecular dynamics (MD) simulations is the choice of the
interaction potential. One wants to avoid those situations, where the electron falls
onto an energy state below the quantum-mechanical ground state. With the pure
Coulomb potential, if two electrons collide near the nucleus, one of them can fall to a
very deep energy and the other one will be ionized with the energy difference. Both
effects are unphysical.

One approximation, also used in astrophysical calculations for efficiency reasons,
is the so called soft-core potential

U(r) = − Z√
r2 + a2

. (4.37)

We choose the parameter a according to the ionization potential of the ground state
if the electron were bound

lim
r→0

U(r) = −Z
a

= −E(Z−1)
ip . (4.38)

For rare gas clusters this is on the order of one: a = 1.7 for Xe, with Eip = 12.1 eV
and a = 1.4 for Ar, with Eip = 15.75 eV.
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The soft-core, or U-shaped potential becomes harmonic for very low energies,
leading to artificial resonances if the frequency of the driving laser field matches the
eigenfrequency ω0 =

√
Z/a3.

U(r) = −Z
a

+
Z

2a3
r2 − 3Z

8a5
r4 +O(r5) . (4.39)

H
HHH

HHa
Z 1 2 3 4 5 6 7 8

ω0 [eV]
1.4 (Ar) 16.43 23.23 28.45 32.85 36.73 40.24 43.46 46.46
1.7 (Xe) 12.28 17.36 21.26 24.55 27.45 30.07 32.48 34.72

Table 4.1: The eigenfrequency ω0 =
√
Z/a3 of the U-shaped potential for several

charge states 1 ≤ Z ≤ 8 and parameters a.

The range spanned by the eigenfrequency ω0 of the U-shaped potential for the
charges Z and parameters a encountered in the current work is shown in Table 4.1.
Unfortunately, the possible values for ω0 overlap half of the operation range 12− 100 eV
of FLASH (Ackermann et al. 2007; Ayvazyan et al. 2002a, 2006). To avoid this draw-
back we have also considered a V-shaped potential

V (r) = −Z
r

(1− er/a) , (4.40)

for which limr→0 V (r) = −Z/a also holds. The oscillation frequency for small oscilla-
tions diverges however, because V (r) is not differentiable at origin

lim
E→−Z/a

ωV = lim
E→−Z

a

π

4

√
Z

a

(
E +

Z

a

)− 1
2

=∞ (4.41)

Section 5.2 and Appendix C will investigate the implications of each of these two
potentials deeply. The following considerations have a general character and do not
depend on the specific form of the potential. A generic form v(i, j) will therefore be
used instead

v(i, j) =

{
1/
√

(ri − rj)2 + a2 U-shape

(1− e−r/a)/r V-shape
. (4.42)

4.2.2 Force computation algorithms

If the total number of particles does not exceed a few thousands, we compute
the forces upon each particle by direct summation. Otherwise we switch over to
a hierarchical tree code, introduced by Barnes and Hut in 1986 for astrophysical
calculations (Barnes and Hut 1986).

The main advantage of hierarchical tree codes is that the number of explicit force
calculations scales as O(N logN), as opposed to the simple direct summation, which
scales as O(N2). Very advanced tree codes, such as Greengard’s Fast Multipole
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Figure 4.9: Comparison of the U- and V-shaped potentials with the Coulomb potential
for Z = 6 and a = 1.7 (Xe). The dotted line shows the harmonic limit of the U-shaped
potential for small oscillations.

Method (FMM) (Cheng et al. 1999; Greengard and Rokhlin 1987; White and Head-
Gordon 1994) or Dehnen’s O(N) tree code (Dehnen 2002) scale as good as O(N) or
even less (Dehnen 2002).

The basic idea of these algorithms is to build hierarchical groups of particles.
Fig. 4.10 describes the original idea of Barnes and Hut for a 2D system. The top
of the hierarchy is represented by a box including all particles in the system. This
box is then divided and each particle is assigned to one of the 4 boxes. The process
is repeated for each of the new boxes, until each particle is assigned to a box and
doesn’t share it with any other particle. Empty boxes are discarded.

1
2

4

3

5
6

8
7

9

10

root

43

21

10

8 97

5 6

Figure 4.10: Hierarchical, unbalanced grouping of a system of particles as described in
Barnes and Hut (1986) and implemented in Barnes (2001). θ = 0.9, meaning that the
interaction between particle 3 and each of the particles 7, 8 and 9 will be evaluated.

When the force upon a particle is computed, the hierarchy is traversed from top
to bottom. If a box is far enough, then there is no need to go deeper and look inside.
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Instead, the force upon the particle is computed directly by using the monopole and
higher multipoles of the box. The great advantage is that multipoles are computed
once, quite easily actually, while the hierarchical structure is being built, and used
many times during the force calculation. A box is distant enough if it can be seen
under an angle smaller than an angle θ0 chosen at the beginning of the simulation.
θ0 = 0.4 and multipoles until the quadrupole are a very good compromise (Pfalzner
and Gibbon 1996).

Other tree codes avoid deep hierarchies by limiting the minimum number of par-
ticles in a box between 6 and 20 (Dehnen 2000). At the same time, they also consider
a symmetric multipole expansion, such that the interactions can already be evalu-
ated at a box-to-box level, further reducing the complexity of the algorithm to O(N)
(Dehnen 2000).

We have used Barnes and Hut’s method summarized above and maintained by
J. E. Barnes as a software package at http://ifa.hawaii.edu/~barnes/treecode.

http://ifa.hawaii.edu/~barnes/treecode
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Chapter 5

Adiabatic pumping: clusters in
FEL VUV radiation

We have so far presented a new method for describing the interaction of atomic
clusters with laser radiation. The photo-ionization of a many-electron atom has been
adapted to the cluster environment. The surrounding ions lower the ionization thresh-
old and the plasma formed by the quasi-free electrons trapped in the space charge
of the ions screen the attraction of the nucleus, lowering the binding energy of the
bound electrons. We have identified those plasma electrons which localize by the ions,
screening them effectively. The mean revolution period of their motion about the ions
defines the time scale for a coarse-grained dynamics, which makes the link between
the classical, deterministic motion of the quasi-free electrons and the rate based,
quantum mechanical description of the dynamics of the bound electrons, including
photon absorption.

We will illustrate this model with the example of an Ar147 cluster illuminated by a
100 fs, ~ω = 20 eV and I = 7× 1013 W/cm2 laser pulse, similar to those available at
the free electron laser facility at DESY, in Hamburg (Ayvazyan et al. 2002a; Wabnitz
et al. 2002). The rise of the pulse is very slow on the time scale for plasma equilibration
Eq. 4.15, such that the electron plasma is in quasi-equilibrium and will adiabatically
follow the pulse envelope. Real-time, as well as coarse-grained dynamics during the
interaction with the laser pulse will be presented, followed by typical experimental
observables, such as ion charge distribution or electron energy spectrum, obtained
after propagation for several picoseconds. The second part will analyze the transition
to higher photon energy, meanwhile also available (Ackermann et al. 2007; Ayvazyan
et al. 2006), more precisely the impact on the way energy can be transferred from light
to matter. We will also analyze the role played by the choice of the model interaction
potential v(i, j) Eq. (4.42) on these results, i.e. check for artificial resonances. The
last section will benchmark the presented framework on very recent, yet unpublished
experimental results at 38.7 eV photon energy (Möller 2007).
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5.1 Coarse-grained dynamics in Ar147

Rare gas clusters are held together by van der Waals forces, whose most sta-
ble structures are the famous Mackay icosahedra (Haberland 1995), having N =
13, 55, 147, 561 . . . atoms. Doye (1997) provides a large database of lowest energy
configurations for Lennard-Jones cluster with sizes 3 ≤ N ≤ 1000, normalized to the
length of the dimer. The N = 147 structure has been calculated by Northby (1987).
We have assumed a dimer length of 3.405 Å (Napari and Vehkamaki 2004).

The pulse envelope was chosen to be a sin2, which is very close to a Gaussian, but
has the advantage to have a real zero at the beginning and at the end

E(t) =

{
E0 sin2

(
t
αT
π
)

sinωt if 0 ≤ t ≤ αT

0 otherwise.
(5.1)

T is here the full width at half maximum of the laser intensity and α = 1/(1 −
2 arcsin(0.51/4)/π) ≈ 2.74.

Fig. 5.1 shows the main quantities characterizing the interaction, namely energy
absorption, ionization degree, plasma temperature and average inter-ionic distance.
The first part of the pulse, until ≈ 60 fs, is dominated by photo-ionization. Inverse
bremsstrahlung sets in with increasing electron density, to contribute finally two thirds
of the total energy absorption. Panel (b) shows the number of ionized electrons per
atom. Most of these (nquasi-free) remain trapped in the positive background charge, but
evaporate slowly with increasing energy absorption. The number of localized electrons
nloc increases initially because of the very fast photo-ionization, but starts to decrease
due to the increasing temperature. At t ∼ 140 fs the pulse reaches maximum intensity,
but the temperature starts to decrease due to the rapid cluster expansion and nloc

increases. The cluster expansion is described by the rms next-neighbor inter-ionic
distance

Ravg =

√
1

N

∑
i

min
i 6=j

r2
ij . (5.2)

The temperature can be defined soon after the first electrons have been trapped
in the cluster. A simple estimation, Eq. (4.15), pointed to a thermalization time of
roughly 0.8− 8 fs if every second ion were ionized at once. In contrast, 10, even 20 fs
are needed from this point on to further reach full ionization or double ionization,
respectively, as shown in Figure 5.1(b). The velocity distributions in Fig. 5.2 confirm
the fast onset of a Maxwell-Boltzmann distribution. The first two distributions were
recorded at the times marked by the vertical dotted lines in Fig 5.1, namely at 56 and
202 fs, when the laser has reached 12% and respectively dropped to 30% of the peak
intensity. At long expansion times, such as t ≥ 2.44 ps, the cluster has disintegrated
and only the delocalized quasi-free electrons maintain a thermal distribution. The
electrons localized about an ion cannot exchange energy with other electrons due to
the large inter-ionic separation, such that their velocity distribution is almost frozen.
Slow changes still occur, of course, due to the non-vanishing interaction with the
dilute, cold electron plasma.
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Figure 5.1: Main quantities describing the explosion of Ar147 when illuminated by
a VUV laser pulse. (a) total energy absorption compared to the contribution of
photo-ionization. (b) total number of ionized electrons per atom, with quasi-free and
localized quasi-free electrons. (c) the temperature kBT = 〈v2〉/3 of the quasi-free
electrons. (d) average inter-ionic distance according to Eq. (5.2).

The coarse-grained dynamics introduced in the previous chapter is illustrated in
Fig. 5.3 and 5.4 at the example of the central and some surface atom of the cluster.
Fig. 5.3 shows the overall evolution over the whole laser pulse. Fig. 5.4 zooms into
Fig. 5.3 such that the time intervals Ti become visible. The total energy E∗ of the
ion and its localized electrons are averaged over the Ti.

Starting in the neutral, lowest energy state, the energy of the ions increases with
each ionized electron. The sharp rising steps of the total energy E∗ point exactly
the ionization events, where a photon has been absorbed and an electron has been
released. It should be noted that the height of each step increases with increasing
charge and they are higher than the photon energy. This is just a technical artifact
leading to a faulty energy balance in Eq. (4.19). Once ionized, an electron is counted
as delocalized because its revolution angle is less then 4π. Naturally it is missing from
Eq. (4.19) where only localized electrons are considered. The energy of the effective
ion seems therefore to have increased by more than ~ω after ionization because the
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Figure 5.2: Electron velocity distributions in Ar147 at several time instants during the
interaction with the laser and the subsequent expansion. The time instants of the first
two panels, that is t = 56 fs and respectively t = 202 fs, have been marked by vertical
dotted lines in Fig. 5.1. When the cluster has disintegrated, the Maxwell-Boltzmann
distribution is restricted to delocalized electrons.

energy of the outgoing electron is fully neglected.

The plateaus of E∗ in Fig. 5.3, in Fig. 5.4 also visible for the central atom, cor-
respond to situations of zero localized electrons, as shown by nloc in the same figure.
Electron localization is equivalent to relaxation and therefore E∗ will quickly decrease
as soon as this happens. At the end of the pulse the surface atom is less charged than
the central atom. Moreover, electron localization at this ion is rather an isolated
event.

The quasi-free electrons neutralize the core of the cluster, leaving the excess of
positive charge at the surface. The ions there will experience the highest acceleration
and expand faster than the rest. The rapidly increasing inter-ionic distance raises the
potential barrier between neighboring ions, preventing further ionization. Moreover,
the electron density is much lower, such that the localization of electrons and thus
the screening of the atomic orbitals is less effective.

When the cluster disintegration is complete, some of the quasi-free electrons will
have recombined with ions. The detector will measure the charge distribution of the
ions, as well as their velocities and the velocity of the electrons. Fig. 5.5 shows the final
ionic charge and electron kinetic energy distribution after an expansion time of 6.4 ps.
The ion charge distribution doesn’t change considerably with further expansion. For
Ekin > 5 eV the electron kinetic energy distribution won’t change either and can be
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Figure 5.4: Coarse-grained dynamics: zoom of Fig.5.3 at the scale of the Ti. The
continuous lines show the average of E∗ for both ions over the intervals Ti. The gray
line in the top panel depicts the assisting laser field.
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fitted by an exponential e−Ekin/E0 with E0 = 5.4 eV, thus emphasizing the thermal
nature of these electrons. This value in remarkable agreement with the experimental
findings of de Castro et al. (2005), who have found a Maxwell-Boltzmann distribution
peaking at 5 eV. The agreement should rather be considered in the broader limits
of the order of magnitude, since the authors have investigated Ar270 clusters exposed
to 100 fs, ~ω = 13 eV and I = 4.4× 1012 W/cm2 laser pulses. That is less power
density and smaller cross-section of the two-photon absorption on the one side, but
more efficient energy absorption on the other side due to the large cluster size, more
kinetic energy impinged on the photo-electrons by the two photons and more efficient
IBS due to the lower driving frequency, as it will be shown in the next section.
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Figure 5.5: Ion charge distribution (left) and electron kinetic energy distribution
(right) as measured on the detector after a very long expansion time. The effective
ion charges including localized electrons have been displayed. The electron kinetic
energy spectrum can be very well fitted by an exponential e−Ekin/E0 with E0 = 5.4 eV
(dashed line). The propagation time was 6.4 ps

The energy cut off has been chosen on two considerations: on the one hand, the
very first photo-electrons which leave the cluster do not thermalize by any means
and should therefore not be included in the fit. Their kinetic energy is Ekin = ~ω −
Eip(Ar) = 4.76 eV, just underneath the chosen cutoff.

On the other hand, the cluster expansion cools the electron plasma over several
orders of magnitude, as shown in Fig. 5.6. The expansion lowers the trapping potential
at the same time, such that the hotter plasma electrons have positive total energy
and can leave the cluster. They form a continuous stream of electrons of constantly
decreasing kinetic energy, according to the temperature they have evaporated from.
Hence the second reason for the cutoff in Fig. 5.5, since slow electrons cannot generally
be measured accurately in an experiment (de Castro et al. 2005). They are numerous
and saturate the detectors. Moreover, they are sensitive to stray fields always present
in an experimental setup, such that their energy would not contain much information
anyway, if it could be measured at all.

As shown in Fig. 5.6, the plasma cools by a power law with a coefficient of ≈ 1.1.
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Figure 5.6: The temperature of the delocalized electrons decays as a power law with
an exponent of 1.099 over very long expansion times. Inset shows linear fit.

If the equation of state pV = νkBT of an ideal gas is applied, with

p ∼ electric field at the cluster boundary

surface
∼ R−4 ,

then kBT ∼ R−1 ∼ t−1 since the cluster expands at constant speed now, as shown in
Fig. 5.1. The deviation from −1.1 could be attributed to losses via electron evapora-
tion and the long range Coulomb interaction of the electron gas.

5.2 Decoupling the quasi-free electrons in the ex-

treme ultraviolet

Inverse bremsstrahlung has been shown so far to dominate the energy absorption
process in the VUV range. It is the response of the quasi-free electrons which, trapped
inside the cluster, scatter against all ions at once while being driven by the laser
field. The inherent dephasing leads to a net acceleration of the electrons. Electron-
electron correlation and screening effects also contribute to the picture. Both the
ponderomotive energy Up and amplitude xp decrease with the square root of the laser
frequency. It should therefore be expected that a weaker coupling at high frequencies
diminishes inverse bremsstrahlung until cancellation.

Krainov (2000) has predicted a decay of the IBS heating rate as ω−8/3 for a
Maxwell-Boltzmann plasma of ionic density ni, average ionic charge Z and electron
temperature T exposed to a laser field of frequency ω and intensity E2〈

dE

dt

〉
=

213/6 π3/2 Z4/3 ni E2

15× 35/6 ω8/3
√
T
·

Γ
(

1
3

)
Γ
(

2
3

) . (5.3)

Siedschlag and Rost (2004) have integrated Eq. (5.3) with the time dependent
laser intensity E2(t) and plasma parameters ni(t), Z(t) and kBT (t) extracted from
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a microscopical simulation. They have obtained very good agreement with the IBS
absorbed energy observed numerically if the average ionic charge Z(t) was reduced
by f = 0.6 to account for screening effects in the plasma.
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Figure 5.7: Average energy absorption and ionization degree in Ar147 illuminated
with a 100 fs laser pulse for several frequencies of the latter. Two model potentials,
V- and U-shape as defined in Eqs. (4.40) and respectively (4.37) have been used for
the interaction of charged particles.

We have investigated the energy absorption and ionization in Ar147 as a function
of the laser frequency for both model potentials introduced in Sec. 4.2. The results are
summarized in Fig. 5.7. Both potentials show similar behavior, with dominant inverse
bremsstrahlung at lower frequency and almost non-existent beyond 40 eV. At high
frequencies photo-ionization is solely responsible for energy absorption. The minimum
at 50 eV owes to the Cooper minimum of the cross-section (Fig. 4.2). The number of
photo-ionized electrons is almost identical for both potentials. Differences arise from
the ionization “bias” of the U-shaped potential. By construction, U(r) ≤ V (r) for all
r, see also Fig. 4.9, such that U(r) will always yield lower ionization thresholds. This
bias towards ionization can be observed much better not at the photo-ionization curve,
but at the number of field-ionization events, given by the difference ntotal − nphoto in
the lower panels of Fig. 5.7. Fluctuations of the plasma micro-field make isolated
ionization events possible without absorption of a photon. Though present for both
potentials, these events are obviously more numerous for U(r).

Photon energies larger than 40 eV show the main pitfall of our approach. In this
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range not all atoms in the cluster will have been ionized by the end of the laser pulse
due to the very small cross-section. Collisions between neutral and charged atoms
become possible, because neutral atoms are fully transparent to the charged ones.
We do not account for the direct interaction of the nuclei if their charge is no longer
effectively screened by the electron cloud, as it happens when two atoms come too
close to each other and their electron clouds overlap. An approaching charged ion
can thus field ionize electrons off the valence orbital of a neutral atom by lowering
the potential barrier. By the time the heavy ions start to repel each other, they
will have come so close to each other, that they will have engaged a closed loop of
field ionization events, where they reciprocally lower the potential barrier. U(r) is
especially sensitive here, as it generally yields lower ionization thresholds.
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Figure 5.8: Comparison of EIBS for Ar147 as a function of the laser frequency for
the two different model potentials, U(r) and V (r). EIBS has been normalized to the
number of quasi-free electrons.

Resonance effects, meant to be prevented by the choice of V (r) in Sec. 4.2, can
be out-ruled as a cause for the excess electrons when U(r) is used. The main observ-
ables of the experiment, the total energy absorption or the number of outer-ionized
electrons are identical for both U(r) and V (r). The fact emphasizes once more the
very weak coupling between the laser field and the quasi-free electrons at high fre-
quencies. Although more electrons are available with U(r), they have no effect on
the outcome. Fig. 5.8 shows EIBS renormalized to the number of active (quasi-free)
electrons. Although U(r) seems slightly more effective, the effectiveness stays well
within the error bars.

The cross-over of nph-abs and nfree at ~ω = 100 eV in Fig. 5.7 marks the maximum
photon energy for which a plasma can form. Beyond that energy all photo-electrons
leave the cluster. The limit can be shifted by varying the laser intensity, thus the
total space charge, as shown in Fig. 5.9. At the lower intensity I = 4.9× 1013 W/cm2

the maximum photon energy for plasma formation drops to 90 eV, but at the ten
fold intensity it is already larger than 150 eV. For I = 9.8× 1014 W/cm2 inverse



60

0

100

200

300

400

500

600
E

ab
s / 

at
om

  [
eV

]
I = 9.8×10

14
 W/cm

2
I = 4.9×10

14
 W/cm

2

E
total

E
photo

I = 4.9×10
13

 W/cm
2

0 50 100 150
hω  [eV]_

0

1

2

3

4

5

6

n el
ec

tr
on

s / 
at

om

0 50 100 150
hω  [eV]_

0 50 100 150
hω  [eV]_

n
total

n
photo

n
free

Figure 5.9: Absorption spectra and ionization degree of Ar147 clusters for different
laser intensities. At low frequencies the cluster is fully ionized and the energy absorp-
tion is dominated by inverse bremsstrahlung, which becomes rapidly irrelevant with
increasing frequency.

bremsstrahlung is present up to 90 eV.
The minimum for photo-absorption also shifts with laser intensity. At low inten-

sities, the average charge is +1 or less beyond 40 eV, such that photo-absorption is
dominated by neutral Ar and the minimum appears at the Cooper minimum. The
average charge increases to +3 at high intensities, such that neutral Ar saturates and
photo-absorption is dominated by the higher charges. The minimum is shifted to
down 40 eV.

A detailed investigation of the model potentials U(r) and V (r) for a single electron
driven by a laser a field, as well as an analysis of the Krainov scaling law for dense,
highly collisional correlated plasma are presented in Appendix C.

5.3 Sequential cluster ionization

November 2005 another stage of the FEL at DESY became operational pro-
viding radiation down to 13 nm and peak power densities up to 1014 W/cm2 (Ay-
vazyan et al. 2006). Fig. 5.10 shows results of first experiments, where argon clus-
ters containing on average 〈N〉 ≈ 900 atoms were exposed to 25 fs and 32 nm
(~ω = 38.75 eV) FEL pulses with power densities varying from 1.18× 1013 W/cm2

up to I = 6.23× 1013 W/cm2 (Möller 2007). The main peaks at a time of flight of
≈ 50 ns can be attributed to the Ar 3p electrons. The data have been obtained by
filtering the electron spectra according to selected energy windows of the FEL pulse.
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Other peaks in the spectra are therefore either due to insufficient statistics, or a proof
for sequential escape of electrons from the cluster.
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Figure 5.10: Electron time of flight spectra for Ar〈917〉 clusters exposed to FEL 25 fs
pulses at 32 nm. The spectra have been filtered according to the instantaneous energy
in the FEL pulses. From Möller (2007).

The photon energy ~ω = 38.75 eV is close to the Cooper minimum of Ar (Fig. 4.2).
The photo-ionization rate is here very low, such that the electrons leave the cluster
one by one. In a single cluster measurement they would be observed as isolated peaks
in the TOF spectra, as the cluster charge increases with each photo-ionized electron,
slowing the next one down.

No electrons with time of flight shorter than that of the Ar 3p main line have
been observed for any of the depicted intensities. They correspond to kinetic energies
higher than that of the Ar 3p electron and are normally a signature for thermionic
emission. Their absence implies that there is no other energy absorption mechanism,
in particular no inverse bremsstrahlung, besides photo-ionization. These were also
our findings in the previous section for four times longer and slightly stronger pump
pulses.

We have performed calculations with similar parameters for a quantitative com-
parison. Icosahedral Ar923 clusters have been exposed do 30 fs pulses with ~ω =
38.64 eV for two intensities, I = 4.9× 1013 W/cm2 and 9.8× 1013 W/cm2, respec-
tively. The recorded electron spectra have been averaged over 70 ensembles and are
shown in Fig. 5.11 along with the experimental results for 6.23× 1013 W/cm2. The
time axis of the spectra was normalized to a single point, the position of the Ar 3p
maximum. The yields have been normalized such that the maxima stay in the same
ratio to each other as the corresponding pump pulse energies do. The agreement is
almost perfect. The low energy tails, corresponding to longer times of flight, decay at
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Figure 5.11: Comparison of experimental and theoretical electron spectra of Ar clus-
ters exposed to 38.7 eV FEL radiation. Left, time of flight, right kinetic energy
spectra. The black lines (shaded gray on the left) correspond to the upper panel
of Fig. 5.10. The red and blue lines show our findings for Ar923 icosahedral clus-
ter exposed to 38.64 eV, 30 fs pulses with I = 9.8× 1013 W/cm2 and respectively
I = 4.9× 1013 W/cm2. The time axis was normalized to a single point, the maxi-
mum of the Ar 3p lines. The yields were normalized such that the intensities of the
Ar 3p lines stay in the same ratio to each other as the respective pump pulse energies
do.

the same rate. They are a superposition of sequential production of electrons during
the laser pulse and evaporation of quasi-free electrons from the cluster plasma. As
shown in Fig. 5.12, only a small fraction of the photo-ionized electrons are actually
outer ionized, despite the low cross-section, short excitation time and Lucite low in-
tensities. Although the cluster is not fully ionized, it is large enough such that the
absolute charge can trap electrons to form a plasma. Thermal electrons evaporate
from this plasma during the subsequent expansion and fragmentation, producing the
characteristic exponential decay of the spectrum in the low energy range, Fig. 5.11,
right. The decay constant is approximatively E0 = 10.6 eV.

With less power density, the Ar 3p main line is emphasized with respect to the rest
of the spectrum. As Fig. 5.12 suggests, as long as I > 7.1× 1012 W/cm2, the laser
intensity has no impact on the photo-electrons actually leaving the cluster. It merely
changes the number of photo-electrons which remain trapped and form a plasma.
With less electrons in the plasma, less electrons can evaporate and the thermionic
tail in Fig. 5.10 vanishes. The sharp features observed in Fig. 5.10(b,c) could therefore
be attributed to the spatial distribution of clusters in the laser focus, where the main
Ar 3p line could be amplified by clusters in the outer region of the focus. The reason
why they cannot be seen in Fig. 5.10(a) may simply be bad statistics, where specific
parts of the focus space have not been sampled. Only 15 shots are shown there, as
opposed to 750 in (b) and 68 in (c). The cluster size distribution plays a similar
role. In large clusters the energy difference between two consecutive photo-electrons
is smaller due to the larger rms distance to an already ionized atom. This would
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Figure 5.12: Average photo- and outer ionization in Ar923 exposed to ~ω = 38.64 eV,
30 fs laser pulses for two intensities, I = 4.9× 1013 W/cm2 (left) and respectively
I = 9.8× 1013 W/cm2 (right).

again amplify the main Ar 3p peak with respect to the rest of the spectrum. The
topic requires obviously more investigation, as well as more experimental data, and
will be subject to future work.
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Chapter 6

Probing the cluster dynamics with
attosecond laser pulses

Time-resolved analysis of the laser-cluster interaction, as performed in the previous
chapter, is not accessible experimentally. In the following we will present a scheme
where an additional attosecond laser pulse in the extreme ultraviolet regime (XUV)
can be employed to probe the incoherent many-particle dynamics inside the cluster.

Applications of attosecond pulses have been so far limited to initiating single- or
few-electron coherent dynamics in a series of elementary processes, which will be sum-
marized in first section. Section two will then deal with the main concerns involved
with extending their applicability to probing incoherent, many-particle dynamics in
a cluster. Finally, Ar13 clusters will be probed while pumped by 100 fs VUV pulses,
similar to those available at FLASH and employed in the previous chapters.

The method would also help to shed more light on the underlying mechanisms of
energy absorption, since they are still controversial. Several theoretical works (Bauer
2004; Georgescu et al. 2007a; Jungreuthmayer et al. 2005; Rusek and Orlowski 2005;
Santra and Greene 2003; Siedschlag and Rost 2004) that followed the original Ham-
burg experiment (Wabnitz et al. 2002) have reproduced its main observables, that is
average energy absorption and ionic charge distribution. They have also identified
inverse bremsstrahlung as the main absorption mechanism, but they disagree con-
cerning the origin of its efficiency. To be specific, the transient charge of the ions in
the cluster varies from very high, such as 8+ with Siedschlag and Rost (2004) or 6+,
as encountered in the previous chapter, down to very low, such as +2 with Santra
and Greene (2003).

In particular, Santra and Greene (2003) find effective IBS heating with weakly
charged ions due to the use of a strongly singular effective nuclear potential for the
electron-ion interaction

Vi(r) = −1

r
[i+ (Z − i)e−αir]e−r/λD . (6.1)

Colliding electrons experience thus the full nuclear charge Z as they penetrate the
ion. i represents in this case the ionic charge state and αi parameterizes the screening
of the electron cloud, whereas λD describes screening due to the electron plasma.
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Figure 6.1: Main theoretical proposals for the mechanisms leading to the unexpectedly
high energy absorption in rare gas clusters irradiated by VUV laser fields (Wabnitz
et al. 2002). (top left): IBS due to highly singular effective potential, from Santra
and Greene (2003); (top right) IBS due to high density of the electron nano-plasma,
from Siedschlag and Rost (2004); (bottom left) many-body recombination (MBR),
from Jungreuthmayer et al. (2005); (bottom right) Thomas-Fermi approach with
nine active electrons, from Rusek and Orlowski (2005).

αi were chosen in such a way that the ionization potential of the Xe 5p electron in
Vi(r, λD =∞) was identical to the experimentally known value. IBS is calculated over
quantum free-free transition cross-sections for delocalized, inner-ionized electrons in
the infinite periodical extension of Vi. The result shows 20-fold absorption over the
simple Coulomb potential − i

r
, see also Fig. 6.1 top left.

6.1 Coherent few particle experiments with atto-

second pulses

The development of strong, phase-stabilized, few- to single-cycle, infrared laser
fields (Brabec and Krausz 2000; Goulielmakis et al. 2004) marked the beginning of
attosecond physics. Strong few-cycle pulses have been used to control the motion of
the electron with sub-femtosecond precision, as it is ionized (Kienberger et al. 2002),
accelerated by the field and then driven back to re-collide with the mother atom or
molecule (Itatani et al. 2005; Niikura et al. 2002, 2003; Zeidler et al. 2005). When
this happens, it can recombine to release a photon, it can ionize a second electron or
just scatter off and re-collide later.

Filtering the high harmonics generated by the re-colliding electron upon recom-
bination has been used to generate first sub-femtosecond pulses less than a decade
ago (Hentschel et al. 2001). Pulse durations as short as 170 as at ~ω ≈ 100 eV have
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been reported recently (Lopez-Martens et al. 2005; Schultze et al. 2007). When the
electron is ionized from a molecule, it can be used to image the molecular orbital by
studying the emitted HH spectrum emitted at re-collision (Itatani et al. 2004; Torres
et al. 2007). The spatial resolution obtained corresponds to the wavelength of the
re-colliding electron ∼ 1− 2 Å. The temporal resolution is given by the time the
electron needs to return, that is roughly one half cycle period, 1.3 fs.

Release time
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distributions

Figure 6.2: Principle of the atomic transient recorder. A sudden excitation places an
electron wave packet in the continuum. A near-infrared (NIR) field encodes the time
in the drift momentum of the electrons according to Eq. (6.2). If the final momentum
distribution is measured for several delays between the pump and the NIR probe,
the full time- and momentum structure of the electron wave packet can be retrieved.
From Kienberger et al. (2004).

Experiments with attosecond laser pulses have so far only dealt with coherent
dynamics of single to few electrons. The attosecond pulse initiates a sudden excitation
of the system, whose relaxation is probed with a femtosecond, weak near-infrared
(NIR) pulse. The probe pulse accelerates the electrons right from their emergence in
the continuum at time ti with momentum p0, encoding the instantaneous phase of
its vector potential, hence the time, in the final momenta of the electrons

pfinal = p0(ti) + qA(ti) . (6.2)

The scheme, also known as attosecond streaking (Drescher et al. 2001), is depicted
in figure 6.2. If no external field is present, the wave-packet moves along the lines of
constant momentum, yielding the field-free momentum distribution (in green). In the
presence of an electromagnetic field, the wave-packet moves along the lines of constant
canonical momentum p(t) + qA(t) (red and blue). If several such tomographic pro-
jections are recorded for various delays between the excitation and the probe field, an
“atomic transient recorder” is obtained (Kienberger et al. 2004), which reconstructs
the original time-momentum distribution of the electron emission.

First streaking experiments have studied electron wave-packets created via photo-
ionization or Auger-decay. In the former, the ionization of a valence electron by an
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attosecond XUV pulse was traced. The intensity profile of the XUV pulse itself was
thus retrieved, confirming the sub-femtosecond duration (Hentschel et al. 2001) and
the light-field oscillations of the long, 30 fs NIR probe pulse were recorded (Gouliel-
makis et al. 2004; Hentschel et al. 2001). Other studies have observed the decay of a
core whole created by an XUV pulse and the decay time was measured (Drescher et al.
2002). Strictly speaking, the additional probe was superfluous in both experiments.
Due to the coherent nature of the single electron dynamics, a full measurement in
the energy domain would have sufficed for the determination of time structure. Time
and energy are canonical conjugate variables and thus Fourier related. In this spirit,
strong-field ionization of argon with a few-cycle pulse was used to implement the
equivalent of a double-slit experiment in the time domain (Lindner et al. 2005).

6.2 Prerequisites for probing many-particle dynam-

ics

In contrast to the above mentioned experiments, coherence is lost early in a cluster
due to dissipation of energy along many degrees of freedom, resulting into cluster
expansion. Their complete determination, as performed currently in the reaction
microscope (Dorner et al. 2000; Ullrich et al. 2003), could in principle be imagined,
but the number of particles is simply too large, thus not possible.

(b) at time t= t (c)after the pulse

delay t

femtosecond VUV pulse

attosecond
XUV pulse

kinetic energy of
released electrons

(a) before the pulse

Figure 6.3: Scheme for a slow pump fast probe experiment with rare gas clusters. A
VUV femtosecond laser is shone upon a rare gas cluster and creates a dense nano-
plasma by exciting many electrons per atom into inner-ionized states. An attosecond
XUV laser pulse of high photon energy probes the charge of the atoms by ionizing
valence electrons, whose kinetic energy at the detector is a direct measure for the
initial ionization potential, and hence for the original charge of the atoms.
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We reverse the role of the laser pulses and suggest a long slow pump and a short
fast probe. The cluster is excited by a femtosecond VUV pulse and probed by an
attosecond XUV pulse. The latter creates fast photo-electrons which, much faster
than any other electrons in the system, will be able to leave the cluster in a short
time with almost no interaction. The kinetic energy of these electrons at the detector
will bare the imprint of the instantaneous ionization potential at the atom, as sketched
in Fig. 6.3. The slower they are, the higher the charge of the ions. If the delay between
the VUV and the XUV pulse is varied, the time-resolved charging of the cluster can
be retrieved.

Employing electrons to read out the charge of the ions raises several issues

1. the XUV photo-electrons should be clearly distinguishable from the other elec-
trons,

2. inelastic collisions with ions and electrons should be kept to a minimum,

3. their kinetic energy should uniquely identify the charge state of the parent ion.

We will address these issues for those excitation parameters characteristic for
FLASH and studied in the previous chapter, that is T = 100 fs, ~ωvuv = 20 eV and
Ivuv = 7× 1013 W/cm2. The VUV photo-electrons carry at most 4.5 eV of kinetic
energy for ArN or 7.9 eV for XeN . The large majority of the electrons in the continuum
have evaporated from the cluster nano-plasma and show an exponentially decaying
distribution with energies well below 40 eV (see Fig. 5.5). Issue number one can
therefore be solved by increasing the photon energy. Observation of Ar5+, for which
Eip(Ar5+) = 91 eV, demands thus for at least 130 eV of photon energy. Current
high harmonic sources operate already at ~ω ≈ 100 eV (Drescher et al. 2001, 2002;
Schultze et al. 2007) and photon energies up to keV are considered (Agostini and
DiMauro 2004), since the high-harmonic cutoff Eip+3.17Up increases with the squared
wavelength of the generating field. At 800 nm and I = 1015 W/cm2, it lies already
at 220 eV. The conversion efficiency would decrease strongly in this case due the
increased spread of the re-colliding electron wave-packet, but it is not a handicap for
our probe scheme, as it will soon become clear.

The second issue can be addressed with smaller clusters, to decrease the distance
the electrons travel on their way out of the cluster with respect to the mean-free path.
Higher photon energy helps here also, because the electrons’ mean-free path in the
cluster scales roughly as E2

kin (Spitzer 1962, §5.3), meaning that they would not only
leave the cluster fast, but also collision free.

Though quasi-free electrons represent indeed an obstacle for the XUV photo-
electrons, they do not couple to the XUV radiation because they are delocalized in the
cluster volume. It has already been shown in Section 5.2, that at the afore mentioned
laser frequency ~ω = 130 eV inverse bremsstrahlung is irrelevant for the total energy
absorption. The ponderomotive amplitude is negligible here xp = 7.4× 10−3 au =
0.39 pm, even with a high power density I = 1015 W/cm2.

That quasi-free electrons do not couple to XUV radiation is desirable for issue
number three, since only photo-ionization of bound electrons can deliver information
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Figure 6.4: Orbital resolved photo-ionization cross-sections for Ar (left) and Xe
(right). From Becker and Shirley (1996).

about the charge of the atoms. A one-to-one relationship of the escape kinetic energy
to the charge of the atom is only possible if electrons from deeper bound orbitals
cannot be mistaken for electrons from higher orbitals of higher charged ions. The
situation is illustrated in Fig. 6.4 for Ar and Xe. For the latter at least three orbitals
can be ionized with the above mentioned minimum photon energy ~ω = 130 eV,
namely 5p, 5s and 4d with Eip of 12.1, 22 and 64 eV, respectively. A Xe 4d electron
could thus be mistaken for a Xe5+ 5p electron, with Eip(Xe5+, 5p) = 63 eV. Ar
represents a much better target in this energy range. Only the 3s and 3p orbitals can
be ionized at 130 eV. The threshold for 2p is already higher than 250 eV.

6.3 Attosecond resolved charging of Ar13

We have performed calculations on Ar for the smallest icosahedral structure Ar13.
The pump pulse was ~ωvuv = 20 eV, Ivuv = 7× 1013 W/cm2 and Tvuv = 100 fs.
For the XUV probe pulse we chose ~ωxuv = 150 eV, Txuv = 500 as and Ixuv =
1.4× 1015 W/cm2. The energy of the XUV pulse was chosen in such way, that
the probe does not perturb the cluster dynamics. No more than one electron per
cluster should be created. The photo-ionization cross-section of the neutral Ar at
~ω = 150 eV is ≈ 0.47 Mb. The probability to ionize a single atom under these
circumstances is w = 16.85 × 10−3 and to ionize a single atom in the whole cluster

W (1) =

(
N
1

)
w1(1− w)N−1 ≈ 0.18. The probability to ionize two atoms during the

XUV pulse is W (2) =

(
N
2

)
w2(1− w)N−2 ≈ 0.018. If, on the other hand, the probe

intensity is too low, it can be compensated with higher repetition rate.

The two pulses interact with the cluster ions in exactly the same way, as described
in Chapter 4. If by the end of the XUV pulse no XUV photo-electron has been
created, the simulation is aborted and another one is started. It would be useless
to continue propagating, since we are only interested in kinetic energy spectra. As
mentioned above, only 1 run out of 5 will produce an XUV photo-electron and 1 out
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of 50 will produce two. If at least one is produced, then we continue propagating
for 55× 103 au, that is ≈ 1.34 ps, to ensure the probe electrons have left the system.
The cluster will have completely disintegrated during this time, to an average inter-
ionic distance Ravg = 21 nm from originally 3.4 Å. A 50 eV fast electron will have
travelled 5.5 µm during this time. The field of the XUV pulse is neglected during
the particle propagation due to the small ponderomotive amplitude xp and the small
pulse duration.

Finally, the kinetic energy spectra are recorded. The XUV part of the spectra is
additionally convoluted with the spectral profile of the XUV pulse, which for a sin2

envelope (5.1) corresponds to

E(ω) =
1

2π

ˆ αT/2

−αT/2
E0 cos2 πt

αT
ei(ω−ω0)tdt

=
2πE0

4π2 − (ω − ω0)2α2T 2
· sin (ω − ω0)αT/2

ω − ω0

,

(6.3)

where α = 1/(1−2 arcsin(0.51/4)/π) ≈ 2.75 and the zero centered cos2 representation
of the intensity profile was used. The full width half maximum bandwidth can be
estimated numerically to be

∆ω ≈ 2× 4.525

αT
≈ 3.295

T
, (6.4)

which for T = 500 as yields ∆ω ≈ 4.48 eV.
Kinetic energy spectra of the released electrons are summarized in Fig. 6.5 for

several delays between the pump and the probe pulse. The dashed lines correspond
to the escape energies of electrons photo-ionized from isolated Ar ions and provide
the reference for the average ion charge in the cluster. For very small delays, when
the attosecond pulse comes before the VUV pulse, the neutral argon is probed. The
characteristic peaks of the 3s and respectively 3p orbitals, separated by 15 eV are
obtained. They are shown separately in Fig. 6.6(b). The surface of the peaks, that is,
the cross-section for photo-ionization is influenced solely by the occupation number of
each orbital at this photon energy. The line broadening is caused by the bandwidth
~∆ω of the XUV laser.

With increasing delay the intensity of the VUV pulse increases and cluster ioniza-
tion sets in. First just as a broadening and a slight red shift of the peaks due to the
increasing cluster charge, from ∆t = −105 fs onward as a strong shift towards higher
charges as ionization gains momentum. The shape of the spectrum stabilizes around
∆t = −70 fs, when ionization of the atoms saturates. The shift continues, though at
lower pace, due to electron evaporation (see also Fig. 5.1) and hence increasing space
charge.

The low energy part of the spectrum, displayed in detail in Fig. 6.6(a), does not
change with the delay. These are the electrons set free by the VUV laser. Their
thermal origin is emphasized by the exponential fit with the equivalent temperature
E0 = 3.3 eV, in agreement with the previous findings for Ar147 (Fig. 5.5) and ex-
perimental results (Laarmann et al. 2005). The temperature E0 is lower due to the
smaller cluster size and correspondingly less efficient energy absorption.
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Figure 6.5: Kinetic energy spectra of the outer ionized electrons for several delays of
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escape energies ~ω−Eip(Arq+) of electrons ionized from isolated Ar ions and provide
the reference for the ionization degree.
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probes the 3s and 3p orbitals of the ground state neutral argon in this case, whose
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Figure 6.7: Average effective ionic charge as extracted directly from the MD simula-
tion (blue line) compared to the probed charge (red line).

The center of gravity of the XUV part of the energy spectrum can be subtracted
from the photo energy ~ωXUV to calculate the average ionization potential. Interpo-
lating over the ionization potentials of the ionization series of Ar, an average ionic
charge can be estimated. It is necessary, however, to account for the inherent 3s− 3p
splitting of the valence shell. We do this by taking an average Eip as the reference
Eip(Arq+), where the ionization potential of the 3s and 3p orbitals have been weighted
by their respective occupation number. The probed average charge is compared in
Fig. 6.7 to the real one as extracted directly from the MD simulation. Real charge
means here the effective charge of the ion, including localized electrons.

The probed charge closely follows the real one and they agree very well within
the error bars. The bandwidth of the laser is responsible for less than 10% of the
error. There is a systematic deviation towards higher charges due to the positive
space charge of the cluster and the excited states of the ions. The former decelerates
the electrons by up to 7.5 eV, which translates into probed charges higher by roughly
one half. The latter is actually a counting error. The real charge q shown by the
blue line considers the full charge of the localized electrons. Excited electrons do not
fully screen the nuclear charge. Lower lying electrons screen more, yielding an in-
stantaneous Eip(Ar+q∗) closer to Eip(Ar+q), higher excited ones screen less, such that
Eip(Ar+q∗) approaches Eip(Ar+q+1). Hence Eip(Ar+q∗) > Eip(Ar+q), such that assert-
ing the average charge from the effective ionization potential will always overestimate.
Excited electrons are not counted by their full charge.

The current example conveys a general idea for a yet not suggested use of at-
tosecond pulses: initiate a relatively slow excitation process in an extended system
through a femtosecond laser pulse and probe the non-stationary, most likely dissipa-
tive relaxation dynamics by time-delayed attosecond pulses.

The experimental implementation at the free electron laser in Hamburg is very
difficult, but not impossible, mainly due to the difficulties imposed by the synchro-
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nization of two independent light sources with femtosecond, if not sub-femtosecond
precision. There are indeed proposals for attosecond FEL pulses (Feldhaus et al.
2005; Saldin et al. 2004a,b; Zholents and Fawley 2004), but it could take long until
one is implemented. The experiment could also be performed when both pulses are
generated from high harmonics. Most of the technology is already available (Krausz
2007) and the topic will be explored in the next chapter.
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Chapter 7

Tracing non-equilibrium plasma
dynamics on the attosecond
timescale

The combination of a VUV laser pulse from an FEL with an attosecond XUV
probe, though promising, is still experimentally out of reach. It is very difficult to
synchronize two different light sources with sub-femtosecond precision, especially with
the current FEL implementation where the radiation is generated from shot noise.
There are proposals to generate attosecond pulses in the FEL itself, going as far as
300 as (Saldin et al. 2004a,b; Zholents and Fawley 2004) or even 200 as (Feldhaus
et al. 2005), but they won’t be available in a near future also.

Instead of generating just the XUV probe from high-harmonics, one could use
the same process to generate the VUV pump too, where the two pulses would be
filtered from different regions of the HH spectrum generated by a single NIR pulse.
The technology will be available in a near future (Krausz 2007) and it will unite the
advantage of the affordable table-top experiment with the intrinsic excellent control
of the delay1. The drawback would be much shorter pump pulses, almost 100 times
shorter as with FEL radiation, and generally little energy in the pulse, due to the low
conversion efficiency of the HH process.

The first part of the chapter will analyze the dynamics of Ar13 and Ar55 clusters
excited by few femtosecond VUV laser pulses, focusing on the time-resolved mapping
of the charging with an attosecond XUV probe pulse. In contrast to the earlier, adi-
abatic pump with long FEL pulses, we observe interesting competition between very
fast ionization and relaxation of the nano-plasma. The second part investigates this
phenomenon by analyzing the relaxation of the electron plasma after instantaneous
full ionization of the cluster. The plasma shows in this case strongly-coupled behav-
ior, accompanied by oscillations between kinetic and potential energy with plasma
frequency, similar to observations from ultra-cold neutral plasma (Kulin et al. 2000;
Pohl et al. 2005) or extended strongly one-component plasma (Zwicknagel 1999). The

1Timing better than ±200as has been reported so far (Drescher et al. 2002; Kienberger et al.
2002) for the delay of an attosecond XUV pulse with respect to its NIR generator.
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initial crossover between ionization and relaxation is reminiscent of this behavior. The
last section will show that attosecond pulses can indeed be used to induce and probe
strongly-coupled plasma far from equilibrium. Oscillations of the potential energy
will be traced in form of oscillations of the probed ionic charge.

7.1 Dynamics of Ar clusters exposed to few fem-

tosecond VUV pulses

The parameters of the pump and probe pulse where chosen according to their
experimental availability (Krausz 2007). In the VUV range, 1− 5 fs pulses with
~ω = 20 eV and I = 7× 1013 W/cm2 were used. The probe was performed with
500 as, ~ωxuv = 150 eV and I = 1.4× 1015 W/cm2 pulses. The intensity of the probe
is to a large extent irrelevant. Low intensity can be compensated by the repetition
rate. There is an upper limit, however, where no more than one probe electron per
cluster should be generated, in order not to perturb the subsequent dynamics. For
the chosen intensity, the probability to create a single XUV electron in the whole Ar13

cluster is W (1) ≈ 0.18 and for two or more W (nXUV ≥ 2) ≈ 0.02.
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Figure 7.1: Charging of Ar13 clusters exposed to very short, that is 1, 2.5 and respec-
tively 5 fs VUV pulses with ~ω = 20 eV and I = 7× 1013 W/cm2. Black: average
effective charge, as extracted directly from the MD simulation. Red: the result of the
attosecond probe.

Figures 7.1 and 7.2 show the charging of Ar13 and respectively Ar55 for various
energies of the pump pulse. With Ar13 the intensity was kept constant and the pulse
duration was reduced, for Ar55 the vice versa. The large photo-ionization cross-section
has allowed so far full ionization of the cluster within just a few femtoseconds, long
before the pulse had reached its maximum. This changes with less pulse energy. The
average effective charge, as extracted directly from the MD calculation, is shown in
these figures with black lines. Only 3/4 of all atoms are ionized by the weakest pulse
with Ar13, with Ar55 only 1/2. The pulses did not carry the same amount of energy.
All pulses are too short for electron localization. It sets in rather late and some is
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visible for the stronger, or longer, pulses at the slight decay of the effective charge
after maximum ionization has been reached. Quasi-free electrons start to recombine
into excited states, reducing the effective charge of the ions. For earlier times, the
effective charge is equal to the real charge, that is the ions are in their ground state.

The red lines show the results of the XUV probe. For incomplete cluster ioniza-
tion the probed and the real charge diverge linearly from the beginning. Otherwise
the overall behavior is similar to the longer pump. The probed charge follows the
real charge until photo-ionization has reached its maximum. The deviation is again
somewhere between one half and one full charge. From this point on, the curves
diverge. Electron loss via evaporation gains momentum and the charge of the cluster
increases, leading to overestimation of the probed charge. At the same time, clus-
ter expansion and electron evaporation cool down the nano-plasma, which enhances
electron localization and reduces the effective charge.
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Figure 7.2: Charging of Ar55 exposed to 2.5 fs, ~ω = 20 electronvolt VUV pulses with
I = 1× 1013 W/cm2 and respectively I = 7× 1013 W/cm2.

With Ar55, the intensity of the probe was lowered to Ixuv = 7× 1013 W/cm2,
to keep the number of XUV electrons below one per cluster. With four times more
electrons in the cluster than in the previous cases, the cluster dynamics is no longer so
sensitive against the probe. We have lowered the intensity for accuracy reasons, since
four XUV electrons per cluster, as obtained with Ixuv = 1.4× 1015 W/cm2, resulted
into a tail at the low energy side of the peaks in Fig. 6.5. The charge of the cluster
increases with each probe electron, slowing the subsequent ones down.

Fig. 7.3 depicts the energy balance of the measurement at the example of Ar13

irradiated by the 2.5 fs pulse. The spatial charge density at t = 1 fs has been av-
eraged over 1000 ensembles and the potential along one axis of the cluster is shown
in red. The black dashed lines show the potentials of individual atoms. The differ-
ence between the full cluster potential and the potential of an individual atom yields
Ecluster

ip , the cluster ionization potential. An outgoing XUV electron hits the detector
with Ekin = ~ω−Eip(Z)−Ecluster

ip . The energy balance for photon absorption can be
depicted easily due to the choice rule (4.38) of the parameter a of the model potential
(4.42), which in this case translates to Eip(Z) = (Z + 1)/a. The origin of the absorp-
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Figure 7.3: Potential landscape in Ar13 irradiated by a T=2.5 fs pulse, at t = 1 fs
after maximum. The potential (red line) was obtained by interpolating along the
line connecting the atoms at (−1/3,−6,−10/3) and (1/3, 6, 10/3). The dashed lines
show the potential of the individual atoms, where the charge Z̄ of an atom has been
averaged over all 1000 ensembles. The XUV photo-electrons arrive at the detector
with Ekin = ~ω − Eip − Ecluster

ip . The absorption arrows have been shifted by −1/a

according to Eq. (4.38), which yields (Z + 1)/a = Eip(Z).

tion arrows should thus be placed 1/a below the minima of the potential landscape.
Absorption of a photon places the electron at the final energy

Ef = ~ω + V (α)− 1/a , (7.1)

where V (α) is the potential created by all particles in the system at atom α, including
by the atom itself.

Figure 7.4 shows an overview of Ecluster
ip for the two clusters, Ar13 and Ar55. The

former in the upper row, the latter in the lower. Two time instants are displayed, at
the end of the pulse, when t = T and a few femtoseconds later, at t = 5 fs. Though
more energetic pulses induce higher charging, we see an interesting reversal with Ar13

where
Ecluster

ip (T = 5 fs) < Ecluster
ip (T = 2.5 fs) < Ecluster

ip (T = 1 fs) (7.2)

for both time instants. Electron evaporation increases Ecluster
ip during this first stage

of the relaxation. The ions are frozen on this time scale.
Shorter pulses induce less ionization events, but the plasma they create inside

the cluster is not well localized. Weak ionization creates a shallow cluster potential,
such that absorption of a VUV photon with ~ω = 20 eV = 0.735 au places the photo-
electron very close to the cluster threshold, allowing it to travel long excursions outside
the cluster volume. With less plasma electrons in the cluster volume to screen the
charge of the ions, the XUV photo-electrons experience a higher barrier on their way
out. Stronger ionization, in this case longer pulses, creates a deeper cluster potential
which keeps more electrons within the cluster volume.
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Figure 7.4: Potential landscapes for the excitation scenarios depicted in Fig. 7.1 and
7.2 at two time instants: at pulse end (left column) and at t = 5 fs (right column).
Top row: Ar13; bottom row: Ar55.

The situation changes already with Ar55, where the larger number of atoms creates
a deeper potential for the same ionization degree. The electrons are trapped inside
the cluster even for the weakest pulse, such that the cluster barrier is determined
directly by the overall charge. The higher the charging, the higher Ecluster

ip .

Figure 7.5 compares the overall charging for both clusters and all pulses studied so
far. The charging is given by the number of outer ionized electrons, that is electrons
with positive total energy E > 0, normalized to the cluster size, such that Ar13 and
Ar55 bare comparison. Two stages are distinct: initial ionization, followed by electron
evaporation. The competition between ionization and evaporation leads to either a
plateau or, if the initial ionization is very fast, to a local maximum followed by a
minimum. Rapid initial ionization happens if the field strength increases sharply, as
with the T = 1 fs pulse, or if a large number of atoms can be ionized, as with Ar55.
This transient overshooting of the ionization degree of the cluster can be understood
best if the limit of instantaneous ionization of the electrons is considered.
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Figure 7.5: Charging of the cluster, that is the number of electrons with positive total
energy, normalized to the size of the cluster. Left: Ar13, for the situation described
in Fig. 7.1; Right: Ar55, corresponding to Fig. 7.2.

7.2 Instantaneous cluster ionization: formation and

relaxation of a nano-plasma

Let us assume all atoms absorb simultaneously one photon each. At t = 0 we
create one electron at the nucleus of each atom. The electrons are launched in random
directions with identical velocities, corresponding to the asymptotic kinetic energy
~ω − Eip = 4.24 eV, given by the photon energy ~ω = 20 eV and the ionization
potential of neutral Ar, 15.76 eV.

The charge of the cluster, that is, the number of electrons with positive total
energy is initially 55. But only a fraction of the electrons can actually leave the
cluster. Full ionization to Ar55+

55 requires 3 keV, whereas the total excess energy of
the electrons adds up to only 233 eV. The charge of the cluster, normalized to the
cluster size is shown in Fig. 7.6(a). The total available energy is quickly redistributed
among the electrons, since the average charge drops within 200 as from 1.0 to 0.3. The
previously observed overshooting of the cluster charge (Fig. 7.5) can now be traced
back to instantaneous, or almost instantaneous ionization of the cluster atoms, where
the electrons are created at a faster rate than they can exchange energy. The final
charge of 0.2 per atom is close to the ones observed earlier with realistic calculations
(Fig. 7.5).

The initial state is at the same time one of minimum total potential energy
and maximum kinetic energy. The relaxation of the energy distribution is shown
in Fig. 7.6(b) with the average potential and kinetic energy of the trapped, inner-
ionized electrons. After the initial redistribution of the electrons within the cluster
volume, marked by the sharp increase of the potential energy, the plasma relaxation
continues into a series of energy oscillations, with a continuous exchange of kinetic
and potential energy. The period of the energy oscillations τosc ≈ 0.79 fs is in good
agreement with the plasma period τpl = 2π/ωpl =

√
πm/ρ = 0.77 fs, corresponding

to an effective cluster radius of 8.5 Å. The total energy is conserved, violated only
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Figure 7.6: Relaxation of Ar55 after sudden ionization of all atoms. (a) charging
or outer ionized electrons per atom; (b) total kinetic and potential energy of the
electrons, per electron; (c) Fit parameters for the shifted thermal-like velocity distri-
bution (7.3). Insets: fits of the velocity distributions at several instants during the
relaxation.

slightly through electrons which leave the cluster. This violation is however negligi-
ble, because the number of these electrons is small on this time scale. Moreover, they
are slow and carry little energy.

To check for the existence of a plasma, we have fitted the velocity distributions of
the electrons with the function (MacDonald et al. 1957):

fv0,∆v(v) = C · v2 · exp
(
−(v − v0)2

∆v2

)
, (7.3)

where C is just a normalization constant. fv0,∆v(v) contains both limits: the initial

mono-energetic distribution with v0 =
√

2E0/m and ∆v = 0, as well as the thermal-
ized electron plasma, characterized by a Maxwell-Boltzmann distribution with v0 = 0
and ∆v =

√
2kT/m. The ratio v0/∆v can therefore be used to quantify the relax-

ation of the cluster as a function of time. It is infinite for a mono-energetic electrons
and zero for an equilibrated, Maxwell-Boltzmann velocity distribution.

Fig. 7.6(c) shows the fit parameters v0 and ∆v at several time instants during
the evolution of the electron plasma. At t = 0 one has v0 =

√
2E0/m and ∆v = 0.

Surprisingly, the electron velocity distribution equilibrates within just 0.6 fs, when
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v0 = 0 and ∆v stabilizes. It continues though to perform slight oscillations in phase
with the oscillations of Ekin in Fig. 7.6(b).

In weakly coupled plasma, correlations build up faster than the relaxation of the
single particle distribution function. Assuming that the latter is also faster than
the global relaxation of the system, such as expansion, the Bogoliubov hierarchy
of characteristic times is obtained. This hierarchy breaks down in strongly coupled
plasmas, that is when the Coulomb coupling parameter Γ > 1. The time scales
for spatial correlation and equilibration approach each other, leading to oscillations
of the temperature around the average as equilibrium is reached (Pohl et al. 2005;
Zwicknagel 1999). It is the situation encountered here, where the relaxation time
τ = 0.6 fs of the single particle distribution function is of the same order as the
period τpl = 0.77 fs for plasma oscillations, which sets the time scale for correlation
build-up. The period τosc = 0.79 fs of the energy oscillations is almost equal to τpl,
indicating volume plasmon oscillations. The oscillations damp quickly after just two
plasma periods, which is typical for an inhomogeneous plasma (Pohl et al. 2005).
For comparison, a rough estimation of the plasma equilibration time using Spitzer’s
self-collision time tc (4.15) yields only tc = 287 as.

Whereas plasma oscillations have been observed so far with extended OCP’s
(Zwicknagel 1999) or ultra-cold plasma with million of particles (Kulin et al. 2000;
Pohl et al. 2005), we observe strongly coupled regime with only 55 electrons having
an average temperature of 25, 000 K.

7.3 Creating and monitoring non-equilibrium nano-

plasma in clusters with attosecond laser pulses

The first requirement for the observation of energy oscillations in a nano-plasma is
very high temporal resolution, able to resolve the sub-femtosecond oscillation period.
As mentioned earlier, light pulses generated from high harmonics of a single NIR pulse
already offer this potential. At the moment, each pulse can be timed within ±200 as
with respect to the generating NIR field (Drescher et al. 2002; Kienberger et al. 2002).
This section will therefore address the question whether plasma oscillations can be
initiated and probed with attosecond laser pulses. The first requirement, temporal
resolution, is already fulfilled.

If the same scheme for probing the ionic charge with attosecond XUV laser pulses
is employed, than the energy oscillations of the quasi-free electrons will affect the
initial potential energy, in other words, Ecluster

ip of the XUV photo-electrons and will
be reflected in oscillations of the probed charge. Maximum potential energy corre-
sponds to maximum delocalization of the electron cloud which, as shown in figure 7.4,
imposes a higher barrier on the outgoing XUV photo-electrons, hence higher probed
charge. By the same reasoning, minimum potential energy corresponds to maximum
localization and minimum error of the probed charge.

We have chosen T = 250 as for both the pump and the probe pulse, to ensure
that the initial excitation and the probe are fast on the time-scale of the system
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τpl = 770 as. Experimentally this is already possible: pulses as short as 170 as have
been achieved so far (Lopez-Martens et al. 2005; Schultze et al. 2007). The intensity
I = 5× 1014 W/cm2 of the pump was chosen such, that approximatively one electron
per atom is ionized. Though this intensity is not available yet, it is under active
development (Krausz 2007). The intensity of the probe Ixuv = 2.45× 1014 W/cm2

ensures that multiple probes, that is, several XUV photo-electrons produced during
the laser pulse, will not distort the final result considerably. The probability W (2) =
2.11 × 10−3 to produce two XUV photo-electrons in the whole cluster during the
probe pulse is approximatively 30 times less than the probability W (1) = 6.56×10−2

for just one. As before, a too low probe intensity can be compensated by a higher
repetition rate.

The very short pulse raises two more issues. One of them, the spectral band-
width, has already been encountered in the previous chapter. It becomes even
more important now, since the pump is just as short as the probe and can no
longer be assumed monochromatic. The bandwidth of a 250 as Gaussian pulse is
∆ω = 4 log(2)/T = 7.36 eV, roughly on third of the photon energy of the pump.
Near threshold, the photo-ionization cross-section cannot be considered constant. It
decays almost as ω−3.5, such that the VUV photo-electrons will not only be launched
with different initial velocities, but more electrons will be ionized at the red part of
the pulse than at the blue one.

The other issue arises from the finite number of oscillations performed by the
electric field of a T = 250 as pulse of ~ω = 20 eV photon energy, namely two. Fermi’s
Golden Rule (Friedrich 2006, §2.4) assumes infinitely long interaction times, or at
least long on the scale of the field oscillations.

Both issues can be dealt with if a Gaussian pulse E(t) = ε̂0Ee−t
2/2σ2

cosω0t is
assumed from the beginning when Fermi’s Golden Rule is derived. The transition
probability does not diverge anymore and the limit t→∞ for an average transition
rate is no longer needed.

In first order perturbation theory (Eq. (2.11)), the excitation probability into the
final state state | f〉, such as Ef − Ei = ~ω is

wi→f (t) =
1

~2

∣∣∣∣ˆ t

−∞
〈f |V (t′)|i〉eiωt′

∣∣∣∣2 , (7.4)

which for a Gaussian pulse leads to
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−∞
exp
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dt′
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πσ2E2

8~2
|〈f |ε̂0 · r|i〉|2×[

exp

(
−1

2
(ω − ω0)2σ2

)(
1 + erf

(
t√
2σ
− i(ω − ω0)σ√

2

))
+

+ exp

(
−1

2
(ω + ω0)2σ2

)(
1 + erf

(
t√
2σ
− i(ω + ω0)σ√

2

))]2

.

(7.5)
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The two terms inside the square brackets are alternatively significantly different
from zero for either ω−ω0 → 0 or ω+ω0 → 0. We discard the latter, which describes
stimulated emission

wi→f (t) =
πσ2E2

8~2
|〈f |ε̂0 · r|i〉|2×

exp
(
(ω − ω0)2σ2

) [
1 + erf

(
t√
2σ
− i(ω − ω0)σ√

2

)]2

.

(7.6)

Moreover, σ√
π
e−(ω±ω0)2σ2/2 becomes a δ-function for large σ. In this case, the imaginary

part of the argument to the error function is suppressed and Fermi’s Golden Rule is
obtained when t→∞

wi→f (t→∞) =
π3/2σE2

2~2
|〈f |ε̂0 · r|i〉|2δ(ω − ω0) . (7.7)

Eq. (7.7) differs from the textbook formula (Cohen-Tannoudji et al. 1997, §BIV.1) by
a factor of

√
π due to the Gaussian shape of the pulse. Renormalization to a square

pulse eliminates it.
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Figure 7.7: Time and frequency dependence of the transition rate as introduced by
a Gaussian pulse with T = 250 as. The dipol matrix element is not included, that is

Γp(t) = d
dt

wi→f (t)

|〈f |ε̂0 · r|i〉|2 is shown.

For a fincite pulse and consequently non-zero bandwidth, the ionization proba-
bility presents an oscillatory behaviour due to the imaginary part of the argument
to the error function in Eq. (7.6). This leads to negative instantaneous ionization
rates Γi→f (t) = dwi→f (t)/dt, which though physical, are incompatible with the cur-
rent Monte Carlo approach. It is not possible to recombine electrons back from the
continuum the same way they have been created. This situation is illustrated in
Fig. 7.7 at the example of a 250 as pulse. Only the influence of the pulse envelope is
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shown, that is the instantaneous ionization rate Γi→f (t) was divided by the modulus
square |〈f |ε̂0 · r|i〉|2 of the dipol matrix element. There are two regions of Γi→f (t) < 0,
namely for t > 0 and off-central frequencies. They account however for very little of
the whole ionization yield, for which reason we renormalized the final ionization prob-
ability wi→f (t → ∞) to the intensity profile to obtain the instantaneous ionization
rate

Γi→f (t, ω) =
π1/2σE2

2~2
|〈f |ε̂0 · r|i〉|2 exp

[
−(ω − ω0)2σ2 − t2

σ2

]
=
π1/2σ

2~2
|〈f |ε̂0 · r|i〉|2e−(ω−ω0)2σ2

I(t) .

(7.8)

In our Monte Carlo approach, photo-ionization is evaluated according to the prob-
ability distribution Γi→f (t, ω)dtdω of Eq. (7.8) in each time step for 20 equidistant
frequencies in the range −4σω ≤ ω − ω0 ≤ 4σω, for both the VUV pump and the
XUV probe.
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Figure 7.8: Pump-probe experiment with two very short, equally long T = 250 as
pump and probe pulses. Left: pump with ~ω = 20 eV; right: with ~ω = 30 eV.
The dashed lines show the real average charge as extracted directly from the MD
simulation, the continuous black lines the probed one. The average kinetic energy of
the electrons is shown in red.

The results are shown in Fig. 7.8 for two pump frequencies, ~ω = 20 eV on the left
and ~ω = 30 eV on the right. The dashed lines show the average charge of the atoms,
the continuous black line the probed one. For ~ω = 30 eV the photo-ionization cross-
section is smaller, such that the cluster is only half ionized. Accordingly, the probed
and the real charge diverge linearly from the beginning. The final deviation is also
much larger than with 20 eV, since the larger photon energy allows more electrons to
leave the cluster, increasing the space charge.

The red lines depict the average kinetic energy of all electrons, decaying from ~ω
for the very first electron created, down to approximatively 7 eV for the 20 eV and
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respectively 10 eV for the 30 eV pulse. The relaxation turns into small oscillations,
which are mirrored in the probed charge as expected. Minima of the potential energy,
corresponding to maxima of the kinetic energy, are synchronized with minima of the
probed charge and vice versa. Two oscillations with a period of roughly 0.7 fs are
performed with the 20 eV pump and only one of ≈ 0.95 fs with the 30 eV pulse. The
smaller oscillation period in the first case accounts for the more effective ionization,
hence increased plasma density. The larger density also increases the average pairwise
Coulomb energy, which together with the lower kinetic energy of the electrons yields
a stronger coupled plasma. The damping of the oscillations should be attributed to
the finite size of the system, as energy is dissipated into electron evaporation (Pohl
et al. 2005). No energy has yet been dissipated in the cluster expansion.

In conclusion, attosecond pulses have been used to create a nano-plasma and
monitor its dynamics in systems with radius of only 8.5 Å. Attosecond probing, as
introduced in Chapter 6 has been employed not only during the initial excitation,
but also afterwards, to monitor relaxation. Strong parallels to ultra-cold neutral
microscopic plasma (Killian et al. 1999; Kulin et al. 2000; Pohl et al. 2005) containing
thousands to millions of particles could be observed, owing to the strong-coupling.
With as little as 55 electrons, or even 22, and an average temperature larger than
25, 000 K, the created nano-plasma show fast equilibration on the time scale of the
plasma period, followed by energy oscillations with plasma frequency. Such behavior
had been known so far only from extended one-component plasma (Zwicknagel 1999)
or ultra-cold neutral plasma (Killian et al. 1999; Kulin et al. 2000; Pohl et al. 2005).
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Chapter 8

Summary and Outlook

This thesis has focused on the interaction of intense VUV laser light with rare-gas
clusters. This new parameter regime, namely the interaction of matter with strong
high frequency laser radiation, has been sparked by the ongoing efforts to achieve
microscopy with atomic resolution, time resolved on the scale of atomic motion. Being
able to record the diffraction image of a single object with a single laser pulse requires
very high photon energy to achieve the needed spatial resolution and very high photon
flux, to ensure detectability due to the low cross-section for coherent scattering. Free
electron lasers, now under construction at LCLS in Stanford, at DESY in Hamburg
and at RIKEN in Japan are the only systems that can deliver laser radiation with the
required parameters. However, the dynamics of the target under intense radiation is
not yet fully understood. It is currently assumed that it would be destroyed within
less than 5 fs (Neutze et al. 2000), but the damage threshold could be much higher.

The first experiments with intense high frequency laser radiation were performed
in the VUV regime at 98 nm in 2001 (Wabnitz et al. 2002), during the first testing
phase of the FEL at DESY, in Hamburg. They have shown surprising 40 fold enhance-
ment of energy absorption in atomic clusters with respect to isolated atoms. Theoret-
ical investigation performed in several groups have identified inverse bremsstrahlung
(IBS) as the dominant absorption mechanism in this regime, but they disagree strongly
with respect to the origin of its efficiency.

We have developed a hybrid quantum-classical approach to laser-cluster interac-
tion which pays special attention to screening effects in the cluster nano-plasma. At
the cross-over between IR and X-rays, VUV radiation represents a unique combination
of medium photon-energy and small ponderomotive amplitude. The photo-electrons
are slow. Trapped in the background charge of the ions, they form a dense, warm
nano-plasma. Lacking an immediate heating from the laser due to the small pon-
deromotive amplitude, the plasma screens the cluster ions and modifies their further
absorption properties.

It was possible to identify those electrons which localize about the ions and per-
form the screening. They are in effectively excited states about these ions, a kind of
multiple Rydberg excitations, which allowed us to cast the cluster dynamics under a
new perspective: effectively highly excited ions which interact with each other in the
presence of a fully delocalized electron plasma. We have estimated the binding energy
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and the photo-ionization cross-section of valence or core electrons in the presence of
electrons on Rydberg orbits. On the other hand, the mean revolution period Ti of
the electrons on those orbits defines the time scale on which the excited ions respond
to changes in the cluster environment. These electrons and the time intervals Ti they
define are the key elements for the description of the entire cluster dynamics. All rate
based quantum-mechanical processes are considered in a fixed cluster environment,
defined by the time intervals Ti. They provide thus the natural time scale to interpo-
late between the deterministic classical description of the plasma dynamics and the
quantum-mechanical, rate based description of photo-ionization.

The model was illustrated at the example of an Ar147 cluster exposed to VUV
radiation similar to the one available at FLASH, in Hamburg. The decay of the inverse
bremsstrahlung (IBS) with laser frequency was then analyzed. Normalized per inner-
ionized electron, the IBS absorption proved to be independent of the particular non-
singular approximation of the Coulomb potential over the whole frequency range, thus
mitigating the initial suspicion for technically induced resonances. Indirect effects on
the total IBS absorption are still possible due to slightly different ionization thresholds
each approximation yields, leading to a different number of absorbing inner-ionized
electrons. It was not possible though to identify one model potential as being superior.
Possible implications of a particular choice should be checked on a case to case basis.

Comparison of the IBS absorption rate with the analytical approach by Krainov
(2000) emphasized the role of correlation effects and multiple collisions in a high
density plasma.

In 2005, the new stage of FLASH lased at 32 nm (Ayvazyan et al. 2006). New,
yet unpublished electron time of flight spectra were available (Möller 2007), which
the new model reproduced.

The transient dynamics of the clusters during their interaction with the laser
field is not accessible in the experiment. The final ionic charges measured at the
detector can differ considerably from the ones during the laser excitation due to
recombination during the cluster expansion. Moreover, the incoherent nature of the
process makes it impossible to reconstruct previous states of the system from the
standard experimental observables, such as time of flight or charge spectra.

We have proposed a scheme to probe the transient cluster dynamics with at-
tosecond laser pulses during the interaction with VUV radiation. Operating in the
extreme ultraviolet (XUV), the time delayed attosecond pulse creates very fast photo-
electrons, which leave the cluster immediately. Their kinetic energy at the detector
bares the fingerprint of the binding energy, hence the charge, at the mother atom.
This scheme would shed more light on the absorption mechanisms in the VUV range,
thus helping to discriminate between the different theoretical interpretations (Bauer
2004; Georgescu et al. 2007a; Jungreuthmayer et al. 2005; Rusek and Orlowski 2005;
Santra and Greene 2003; Siedschlag and Rost 2004). At the same time, our specific
example conveys the general idea for a so far not suggested use of attosecond pulses:
Initiate a relatively slow excitation process in an extended system through a fem-
tosecond laser pulse, and probe the non-stationary, most likely dissipative relaxation
dynamics by time-delayed attosecond pulses.
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In the last part we have turned our attention to diabatic excitation schemes. They
were motivated by technological advance of high harmonics (HH) sources which would
allow the implementation of the VUV pump - XUV probe scheme in a table-top ex-
periment. Not only the probe, but also the pump would be generated from high
harmonics. Pulse durations almost hundred times shorter then with FEL radiation
are characteristic here due to the low conversion efficiency of the HH process. In
this limit, an interesting competition between fast ionization and relaxation of the
electron plasma was observed. Analysis in the instantaneous-ionization limit and
realistic calculations with 250 as showed fast relaxation of the single particle distri-
bution function on the time scale of the plasma period, as well as subsequent energy
oscillations with the period of the plasma oscillations. This situation is known as
the breakdown of the Bogoliubov time hierarchy in strongly coupled plasma, when
the equilibration speeds up and the correlation building slows down, to meet at the
period of plasma oscillations. Such behavior was only known so far from extended one
component plasma (Zwicknagel 1999) or ultra-cold neutral plasma (Kulin et al. 2000;
Pohl et al. 2005). The initial competition appears now as the reminiscence of this
behavior. The dynamics was probed by the same method with 250 as XUV pulses
not only during the initial excitation, but also during the relaxation to monitor the
energy oscillations at oscillations of the probed charge.

The hybrid quantum-classical interaction model, the attosecond pump-probe scheme
and the diabatic excitation scheme have been published as Georgescu et al. (2007a),
Georgescu et al. (2007b) and Saalmann et al. (2008), respectively.

The time-resolved study of ultrafast dynamical processes in finite systems requires
for new probing techniques. In the future we would like to eliminate the systematic
error introduced by the space charge with the current probing scheme. The attosec-
ond probe pulse could be replaced by a few cycle IR pulse, in a method similar to
attosecond streaking. Instead of recording the time and momentum distribution of an
electron wave packet emerging from a single atom, one could measure the time and
momentum distribution of a whole electron cloud being ionized from a highly excited
cluster. Alternatively, tuning the probe to a non-linear resonance in the self consis-
tent potential outside the cluster would provide very fast electron beams at regular
time intervals as observed by Fennel et al. (2007) in SPARC. The comb of electron
beams could be used to induce fast decaying core hole excitations in the ions and
allow therefore a time resolved study of the charging via the emitted X-ray photons,
which are no longer subject to interaction with the space charge.
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Appendix A

Average photo-ionization
cross-section for a many-electron
isolated atom

Given the electronic configuration of an atom with q orbitals

lw1
1 . . . lwii . . . lwqq , (A.1)

where lj denotes the orbital and wj its occupation number, we are interested in the
average cross-section for a single electron transition from li to lf under absorption of
one photon

lw1
1 . . . lwii . . . l

wf−1

f . . . lwqq + ~ω → lw1
1 . . . lwi−1

i . . . l
wf
f . . . lwqq . (A.2)

lf can also denote a state in continuum, corresponding to ionization. There are several
allowed states, or energy levels, for each of the initial and final configurations, denoted
by γJ and γ′J ′, respectively. J is the total angular momentum of the electron cloud
and γ stands for the rest of the good quantum numbers. No particular coupling
conditions have been assumed yet and magnetic fields are absent. The transition
cross-section is spread over a whole array γJ − γ′J ′ of transitions allowed between
the initial and final configurations.

The photo-ionization cross-section for a single line, that is for a single γJM −
γ′J ′M ′ transition reads (Friedrich 2006)

σ = 4π2α~ω|〈γJ ′M ′|D̂|γJM〉|2. (A.3)

with the dipole operator

D̂ = e
∑
i

ri , (A.4)

where e is the electron charge and the sum runs over all electron coordinates.

The average cross-section is obtained by summing over the final and averaging
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over the initial states

σavg = 4π2α~ω
∑

γJM,γ′J ′M ′ |D̂γJM,γ′J ′M ′ |2∑
γJ 2J + 1

= 4π2α~ω
Sp
[
(D̂γM,γ′M ′)(D̂∗γM,γ′M ′)

T]∑
γJ 2J + 1

.

(A.5)

The trace operator is invariant with respect to any orthogonal transform and the
multiplicity of a given configuration, in its turn a trace over the identity operator
of the subspace spanned by | γJM〉, also. Hence, σavg is independent of the chosen
coupling representation of the total wave function, such jj, LS or alike. In the
following LS or Russel-Saunders coupling scheme will be used.

In the LS scheme, all wj electrons in lj are coupled together to a total orbital
angular momentum Lj and total spin Sj, which are then coupled onto the total
momenta of the underlying sub-shells

[[[. . . [(L1S1)L1S1, L2S2]L2S2, . . .] Lq−1Sq−1, LqSq] LqSq] JM (A.6)

to obtain total intermediate momenta Lj and Sj. After the last orbital q, the total
orbital angular momentum L = Lq and the total spin S = Sq are obtained. J = J is
the total angular momentum and M = M its magnetic quantum number.

The obtained wave function still lacks antisymmetry, which is added in two steps.
The first one is performed within each sub-shell in a recurrent manner for each elec-
tron, in parallel with coupling of angular momenta. The method, known as coefficients
of fractional parentage – cfp, is described in detail in Cowan (1981, §9-5). The re-
sulting states | lwjj LjSj,MLjMSj〉 are fully antisymmetric and coupled. The product
states

| lw1
1 L1S1ML1MS1〉 . . . | l

wi
i LiSiMLiMSi〉 . . . | lwqq LqSqMLqMSq〉 (A.7)

are then coupled to ψb according to Eq. (A.6). ψb is only antisymmetric with re-
spect to permutation of coordinates within the same sub-shell. Full antisymmetry is
achieved by performing a Slater-like step

| γJM〉 ≡ Ψb =

[∏
j wj!

N !

]1/2∑
P

(−1)Pψ
(P)
b , (A.8)

where the sum runs only over permutations of coordinates among different sub-shells.

Before σavg is evaluated, it should be noted that it does not depend on the field
polarization. If the Wigner-Eckart theorem (Brink and Satchler 1993, 4.7), (Cowan
1981, 11-4) is applied

〈γJM |D̂(1)
q |γ′J ′M ′〉 = (−1)j−m

(
J 1 J ′

−M q M ′

)
〈γJ‖D̂(1)‖γ′J ′〉 (A.9)
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and inserted in (A.5), the sum over the magnetic quantum numbers MM ′ is equivalent
to a spherical average∑

MM ′

σ =
4π2α~ω

[1]

∑
MM ′

[1]

(
J 1 J ′

−M q M ′

)2

|〈γJ ||D̂(1)||γ′J ′〉|2

=
4π2α~ω

3
SγJ,γ′J ′ , (A.10)

which eliminates the laser polarization q. The orthogonality relation of the 3j symbols
(Brink and Satchler 1993, AI),(Cowan 1981, 5.1) was used and D̂(1)

q is the represen-
tation of D̂ in the D1 rotation group, corresponding to linear polarization for q = 0
and circular polarization for q = ±1. [j] is the shorthand for 2j + 1 and

SγJ,γ′J ′ = |〈γJ‖D̂(1)‖γ′J ′〉|2 (A.11)

is the line strength (Shortley 1935).
Because electron coordinates are fully equivalent in Ψb and D̂ is just a sum over

single particle operators, it should be in principle possible to reduce the line strength
SγJ,γ′J ′ to a single particle reduced matrix element

SγJ,γ′J ′ = |〈Ψb‖D̂(1)‖Ψ′b〉|2 = |D1|2 · · · |D5|2|〈li‖rN‖lf〉|2 . (A.12)

The stepwise reduction leads to five coefficients. A strict derivation requires seven
(Cowan 1981), but two of them can be eliminated if it is assumed that the coupling
scheme has been changed such, that the initial and the final orbitals, the only orbitals
affected by the transition, are moved at the end of the LS coupling chain (A.6) for
both configurations. The total orbital angular momentum Lq, the total spin Sq or
angular momentum Jq remain unchanged. On the other hand, both configurations
have identical quantum numbers Lj, Sj,Lj,Sj for all other sub-shells j = 1 . . . q − 2,
which simplify to δ factors when the reduced matrix element (A.11) is evaluated.
With this sub-shell, or orbital permutation, the initial, or source orbital is forelast
i = q − 1 and the final one, or the destination is at the end of the coupling chain
f = q.

If Eq. (A.4) and (A.8) are considered, 〈Ψb|D̂|Ψb′〉 is quickly reduced to the matrix
element of the single particle dipole operator with the coupled and partially anti-
symmetrized states ψb

〈Ψb|D̂|Ψb′〉 = D1〈ψPNb |rN |ψ
P ′N
b′
〉 (A.13)

where D1 = (−1)wf−1√wiwf and PN and P ′N are two identical permutations, except
that the former maps rN into the source orbital li and the latter into the destination
orbital lf .

Eq. (A.8) involves a summation over permutations of coordinates, whereas cou-
pling involves in general summations over magnetic quantum numbers. These two
summations are thus interchangeable and the result of Eq. (A.13) can be applied to
the reduced matrix element (A.11)

|〈γJ‖D̂(1)‖γ′J ′〉|2 = |D1|2|〈ψPNb ‖rN‖ψ
P ′N
b′
〉|2 . (A.14)



94

The second coefficient, D2, will remove the antisymmetry remaining within the
source and the destination sub-shells li and lf , but will not remove the coupling. The
coupling will be removed by D4.

D2 = (lwii αiLiSi{|l
wi−1
i α′iL

′
iS
′
i)(l

wf−1

f αfLfSf |}l
wf
f α′fL

′
fS
′
f ) . (A.15)

D3 uncouples the total spin from the total orbital angular momentum since rN
does not couple to spin (Brink and Satchler 1993, 5.3), (Cowan 1981, 11-7)

D3 = δSqS′q(−1)Lq+Sq+J′q+1[Jq, J
′
q]

1/2

{
Lq Sq Jq
J′q 1 L′q

}
. (A.16)

With D4 and D5, the coupling chain is reordered again, such that it is identical
up to the momenta li and lf of the active coordinate rN . One electron is uncoupled
from within the source orbital [Li−1Si−1, (l

wi−1
i L′iS

′
i, li)LiSi]LiSi and re-coupled on

top of the underlying orbitals as [(Li−1Si−1, l
wi−1
i L′iS

′
i)L
′
iS
′
i, li]LiSi

D4 =

(
i−1∏
m=1

δαmLmSm,α′mL′mS′mδLmSm,L′mS′m

)
(−1)Li−1+L′i+li+Li×

× [L′i, Li]
1/2

{
Li−1 L′i L′i
li Li Li

}
× spins (A.17)

li is still coupled inside Li. It is uncoupled again and re-coupled onto the desti-
nation orbital l

wf−1

f to obtain (l
wf−1

f LfSf , li)L
′S ′. The matrix element with the same

orbital of the final configuration, l
wf
f L′fS

′
f , is then evaluated.

〈[(L′iS′i, li)LiSi, LfSf ]LfSf‖r‖[L′iS′i, (l
wf−1

f LfSf , lf )L
′
fS
′
f ]L
′
fS
′
f〉 =

= δSf ,S
′
f
(−1)S′f−1+Sf+S′f [Sf−1, S

′
f ]

1/2

{
S′f−1 S ′f Sf

Sf Sf−1 s

}
×

× (−1)Lf+lf+L′f [Lf−1, L
′
f ,Lf ,L

′
f ]

1/2


Lf−1 L′f−1 li
Lf L′f lf
Lf L′f 1

 〈li‖rN‖lf〉 =

= D5 · 〈li‖rN‖lf〉 (A.18)

where the intermediate summation over L′S ′ has been left out (see D7 in Cowan
(1981, 14-13) for the missing step).

The average cross-section (A.5) requires the summation of (A.11) over all quantum
numbers LmSmLmSm of all states J of the initial and final configuration, abbreviated
so far by γJ and γ′J ′ respectively∑

γJ,γ′J ′

SγJ,γ′J ′ =
∑

L1L1S1S1...LqLqSqSqJq
L′1L′1S

′
1S′1...L

′
qL
′
qS
′
qS
′
qJ
′
q

|D1|2 . . . |D5|2|〈lf‖rN‖li〉|2 (A.19)
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For D3, the orthogonality of the 6j symbols (Cowan 1981, 5-2) leads to∑
JqJ′q

|D3|2 = δSqS′q

∑
Jq

[Jq]

[Lq]
= δSqS′q [Sq] . (A.20)

Multiplication by D2
5, summation over Lq,Sq,L

′
q and S′q and the orthogonality of

the 9j symbols (Cowan 1981, 5-3) yield∑
LqSqJq
L′qS

′
qJ
′
q

|D3D5|2 =
[Li, L

′
f ,Si, S

′
f ]

[li, lf , s]
. (A.21)

Next indices in the row are L′q−1S
′
q−1 and Lq−1Sq−1, actually L′iS

′
i and respectively

LiSi, since the source orbital is now forelast i = q − 1. We multiply now by D2
4.

Summation over L′iS
′
i leads to a series of δ’s, additional summation over LiSi leads

to
∑

LiSi
[LiSi] = [Li−1, Li,Si−1Si].

∑
LiSiLfSfJq
L′iS

′
iL
′
fS′fJ′q

|D3D5D4|2 =

(
i−1∏
m=1

δαmLmSm,α′mL′mS′mδLmSm,L′mS′m

)

[Li−1, Li,Si−1Si, L
′
f , S

′
f ]

[li, lf , s]
(A.22)

Multiplication by D2
2 and summation over L′iS

′
i and LfSf yields an unity due

to the orthogonality of the cfp coefficients (Cowan 1981, §9.5). Summation over
αmLmSmLmSmα

′
mL
′
mS
′
mL′mS′m form = 1, i−1 eliminates all δ factors from Eq. (A.22)

leading to ∑
L1S1L1S1...LfSfLfSfJq
L′1S

′
1L′1S′1... L′fS′fJ′q

= |D3D5D4D2|2
∑

L1S1...Lf−1Sf−1

f−1∏
m=1

[Lm, Sm]
[L′f , S

′
f ]

[li, lf , s]
(A.23)

since ∑
L1,S1...Li−1,Si−1

[Li−1,Si−1] =
i−1∏
m=1

[Lm, Sm] (A.24)

Each term in Eq. (A.23) represents the multiplicity of a final state with prescribed
L′fS

′
f . Additional summation over L′fS

′
f completes then the summation over all pos-

sible states of the given final configuration. The sum over the states of the initial
configuration was also performed, but was largely eliminated by δ factors, as planed.
Multiplication by D2

1 and insertion into Eq. (A.5) for the average cross-section yields
then

σavg =
4

3
π2α~ωwiwf |〈lf‖rN‖li〉|2

×

(∑
L1S1...Lf−1Sf−1

∏f−1
m=1[Lm, Sm]

)∑
L′fS

′
f

[L′f ,S
′
f ]

[li,lf ,s](∑
L1S1...Lf−1Sf−1

∏f−1
m=1[Lm, Sm]

)∑
LfSf

[Lf , Sf ]
. (A.25)
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When the final state is a Rydberg orbital or an ionized state in the continuum,
the final orbital is unoccupied in the initial configuration, such that Lf = Sf = 0,
whereas for the final configuration one has L′f = lf and Sf = s. We apply once
more the same operation that has been applied already with D3 and D5, namely the
separation of spectator spaces (Brink and Satchler 1993, 5.3) in the reduced matrix
element. In this case we separate the spectator radial coordinate r from the angular
ones

〈lf‖r‖li〉 = (−1)lf [lf , li]
1/2

(
li 1 lf
0 0 0

) ˆ ∞
0

φnili(r)φnf lf (r)dr

= (−1)li+1
√
li ± 1dr(ni, li;nf , li ± 1)

, (A.26)

such that after adding both the contribution from the step up lf = li+1 and the step
down lf = li − 1 terms, the average cross-section becomes

σavg =
4π2α~ωwi
3(2li + 1)

[
(li + 1)dr(ni, li;nf , li + 1)2

+ (li − 1)dr(ni, li;nf , li − 1)2
]
. (A.27)

It depends only on the number of electrons in the initial orbital, its angular momentum
li and on the single particle radial integrals

dr(ni, li;nf , lf ) =

ˆ ∞
0

φnili(r)φnf lf (r)dr , (A.28)

which can be evaluated directly with a HF code, such as Cowan’s, available from
ftp://aphysics.lanl.gov/pub/cowan and described in Cowan (1981).

Eq. (A.27) can actually be generalized for higher order transitions, such as E2 or
M1. The dipole operator er was used explicitly only in the last step, Eq. (A.26), where
it has been assumed that it is a rank one tensor operator. The rest of the derivation is
actually independent of the actual transition operator, as long as it remains a single
particle operator.

Eq. (A.27) plays a central role for the screening approach described in Sec. 4.1.3
and Sec. 4.1.5. The interpolation procedure of Eq. (4.26) for the ionization potential
E∗ip of an ion screened by surrounding electrons, is actually just an approximation
for the radial part of the screened wave functions. External screening weakens the
attraction of the nucleus, such that the bound electrons delocalize. The radial com-
ponent of the wave function is then expressed in terms of the radial component of an
equivalent configuration of less total charge, whose bound electrons are delocalized
naturally due to the reciprocal repulsion. The screened photo-ionization cross-section
can be approximated similarly. According to Eq. (A.5), only the occupation num-
ber wactive and the radial integrals dr are needed. The latter can be copied by the
above prescription from σavg of the equivalent configuration, such that the screened
cross-section can be obtained from the one of the equivalent configuration by simple
exchange of the occupation number

σscr
avg =

wactive

wi
·σavg (A.29)

ftp://aphysics.lanl.gov/pub/cowan
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Appendix B

The cluster potential landscape

The goal is to calculate the average cluster potential as seen by a bound electron
to be ionized. According to the time scale separation introduced in Chapter 4, the
properties of the cluster environment have to be averaged over the natural time scale
given by the mean revolution periods Ti of the localized electrons.

The average cluster potential is determined by the time averaged charge distri-
bution, which is cumulated on a three dimensional grid during a time interval Ti.
Renormalization to the number of time steps and the volume of a grid cell yields the
average charge density in the cluster for the next time interval Ti+1. The spacing is
chosen such, that there are 8 grid points between the closest two atoms in the system.
The size of the grid is adjusted automatically and allows for a buffer of at least 16
points between the outermost atom of the cluster and the grid boundary1.

The Poisson equation with open boundary conditions can be solved with the
method of the image charges (James 1977). Because the model potentials used in
this work no longer obey a Poisson equation, we resort to solving the full three-
dimensional convolution problem

φijk =
∑
rst

qrstgi−r,j−s,t−k (B.1)

by means of a Fourier ansatz similar to that of James (1977). qrst is the charge, not
the density of the cell and gjkl = g(

√
i2 + j2 + k2) is the generator of the spherically

symmetric potential, such as the U-shaped (4.37), the V-shaped (4.40) or the Coulomb
one. Special care needs to be taken here because periodic boundary conditions do
not hold for gjkl.

We will illustrate the approach in one dimension and then switch over to the full
3D problem, where the special requirements of FFTW (FFT 2008), the library used to
perform the FFT, are considered.

The generator g(r) of the spherically symmetric potential is an even function, for
which reason its Fourier transform will reduce to an expansion in cosine functions,

1Outermost atoms are dropped from the cluster when the separation is large enough, that the
grid based method and a simple two body estimation of the barrier lowering yield the same results.
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such as

gi =
n−1∑
α=0

gα cos
iαπ

n
. (B.2)

Eq. (B.2) is actually wrong. While it preserves the symmetry properties at the ori-
gin, it automatically assumes periodic boundary conditions for gi. Later on, the cor-
rect expansion under the correct boundary conditions will be introduced and used,
but for illustration purposes this form is more compact. Inserting (B.2) in the one-
dimensional Eq. (B.1) one obtains

φi =
∑
r

qr

n−1∑
α=0

gα cos
(i− r)απ

n

=
n−1∑
α=0

gα
∑
r

qr

(
cos

iαπ

n
cos

rαπ

n
+ sin

iαπ

n
sin

rαπ

n

)

=
n−1∑
α=0

gα
(

cos
iαπ

n

∑
r

qr cos
rαπ

n
+ sin

iαπ

n

∑
r

qr sin
rαπ

n

)

=
n−1∑
α=0

gαqαc cos
iαπ

n
+

n−1∑
α=0

gαqαs sin
iαπ

n
,

(B.3)

where the c and s subscripts denote cosine- and respectively sine-expansions.
Eq. (B.3) conveys the general idea that a convolution can still be performed ef-

ficiently in the Fourier space when one of the functions can only be expanded in
cosines.

Throughout this work C/C++, or zero based indexing will be used for all vectors.
The correct way to formulate a discrete Fourier transform (DFT) for gi is to extend

it by reflection about the last element

g′i = g′N−i = gi, i = 1 . . . n− 1, N = 2(n− 1) . (B.4)

The new vector g′ obeys now periodic boundary conditions g′i = g′N+i, such that the
Fourier transform is simply

g′α =
N−1∑
j=0

g′j exp

(
2πi

jα

N

)
. (B.5)

g′ is by Eq. (B.4) even symmetric, such that the summation in (B.5) can be reduced
to

g′α = g′0 + (−1)αgN/2 +

N/2−1∑
j=1

g′j

[
exp

(
2πi

jα

N

)
+ exp

(
2πi

(N − j)α
N

)]

= g′0 + (−1)αgn−1 + 2
n−2∑
j=1

g′j cos
jαπ

n− 1
.

(B.6)
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g′α is obviously also even symmetric; insert α→ N − α = 2(n− 1)− α in Eq. (B.6).
Eliminating the redundant elements of g′ and g′α the discrete cosine transform (DCT)
is obtained

gα = g0 + (−1)αgn−1 + 2
n−2∑
j=1

gj cos
jαπ

n− 1
. (B.7)

The inverse DCT or, in other words, the expansion of gi in a series of cosine functions
has the same structure, but will be stated explicitly for reference

gj =
n−1∑
α=0

w(α)gα cos
jαπ

n− 1
, (B.8)

where the weightings w(α) have been introduced for compactness

w(α) =

{
1 α = 0, n− 1

2 otherwise.
(B.9)

The overall normalization constant is 1/N = 1/2(n − 1). It is also clear now that
choosing n as customary a power of two will not achieve the highest performance,
but n = 2m + 1. The FFT algorithm is actually being performed on g′, hence N , not
n, should be either power of two, or at least a multiple of small prime numbers.

The DCT is just a particular case of a DFT, where the symmetry of the input, in
this case the even symmetric input vector g′ of size N , has been used to reduce the
amount of storage to N/2 + 1, at the same time reducing the computation time. The
other way around: based on the way the given vector gi should be expanded to the
periodic g′i, four kinds of DCTs can be distinguished (from (FFT 2008))

• DCT-I: even around j = 0 and even around j = n− 1.

• DCT-II, the DCT: even around j = −0.5 and even around j = n− 0.5.

• DCT-III, the IDCT: even around j = 0 and odd around j = n.

• DCT-IV: even around j = −0.5 and odd around j = n− 0.5.

If g(r) were odd, Eq. (B.6) would yield an expansion in sine functions, which can
again be classified into

• DST-I: odd around j = −1 and odd around j = n.

• DST-II: odd around j = −0.5 and odd around j = n− 0.5.

• DST-III: odd around j = −1 and even around j = n− 1.

• DST-IV: odd around j = −0.5 and even around j = n− 0.5.
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In the following the type-I DST (DST-I) will be needed. The input vector gj has
n elements g0...n−1 and the boundary conditions are g−1 = gn = 0. For storage and
speed reasons, FFTW does not store the zero elements explicitly. The expansion g′

has N = 2(n+ 1) elements and is odd symmetric

g′j = −g′N−j . (B.10)

The elements of gj have also been shifted by one g′j+1 = gj, j = 0 . . . n−1 to explicitly
include the boundary conditions g′0 = g−1 = 0 and respectively g′n+1 = gn = 0.
Inserting into Eq. (B.5) one obtains

g′α =

N/2−1∑
j=0

g′j

[
exp

(
2πi

jα

N

)
− exp

(
2πi

(N − j)α
N

)]

= 2i
n∑
j=0

g′j sin
jαπ

n+ 1

(B.11)

Because g′α is also odd symmetric (g′N−α = g′2(n+1)−α = −g′α), performing the inverse
Fourier transform on g′α yields basically the same formula but with the opposite sign

g′j = −2i
n∑

α=0

g′j sin
jαπ

n+ 1
(B.12)

Eliminating the redundant elements in g′j and g′α, including the zeros, the DST-I
transform can be defined

gα = 2
n−1∑
j=0

gj sin
(j + 1)(α + 1)π

n+ 1
. (B.13)

The imaginary pre-factors i and respectively −i have been removed for symmetry
reasons. Again, for reference, the inverse DST-I reads

gj = 2
n−1∑
α=0

gα sin
(α + 1)(j + 1)π

n+ 1
. (B.14)

The normalization factor is in this case 1/N = 1/2(n + 1) and highest performance
is achieved for n = 2m − 1.

Inserting the DCT-I expansion of the generator g(r) in Eq. (B.1) and applying
the cosine sum rule as in (B.3), a series of eight distinct transforms of the charge
distribution qrst can be isolated, according to whether a cosine or a sine transform is
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performed along each space coordinate

φjkl =
n−1∑
r,s,t=0

qrstgj−r,k−s,l−t =
∑
αβγ

w(α)w(β)w(γ)gαβγ×{
cos

jαπ

n− 1
cos

kβπ

n− 1
cos

lγπ

n− 1

∑
rst

cos
rαπ

n− 1
cos

sβπ

n− 1
cos

tγπ

n− 1
+

+ CCS + CSC + SCC + CSS + SCS + SSC+

+ sin
jαπ

n− 1
sin

kβπ

n− 1
sin

lγπ

n− 1

∑
rst

sin
rαπ

n− 1
sin

sβπ

n− 1
sin

tγπ

n− 1

}
, (B.15)

where the CCSs abbreviate the respective cosine or sine terms. The summations about
the rst indices can be contracted to individual DCT and/or DST transforms of the
charge distribution. The CCS term yields for example

hαβγ(ccs) =
n−1∑
rst=0

qrst cos
rαπ

n− 1
cos

sβπ

n− 1
sin

tγπ

n− 1
=

=
1

8

n−1∑
rst=0

[
w(r) + δr,0 + δr,n−1

][
w(s) + δs,0 + δs,n−1

]
w(t)×

× cos
( rαπ
n− 1

)
cos
( sβπ
n− 1

)
sin
( tγπ
n− 1

)
qrst

=
1

8

[
qαβγ(ccs) + cαr · qrβγ(cs) + cβs · qαsγ(cs) + cαr c

β
s · qrsγ(s)

]
.

(B.16)

The sine term vanishes for t = 0 and t = n− 1, such that according to Eq. (B.13) a
DST-I transform of size n − 2 along the z direction is obtained. The upper indices
denote the coordinates in the Fourier space, the lower ones in the direct space. qr

βγ(cs)
is for example a 2D transform in a yz plane with a DCT along the y axis and a DST
along z. The coefficients cαr select the plane, actually the face of the cube, and the
phase

cαr = δr,0 + (−1)αδr,n−1 . (B.17)

A product of two cba coefficients selects an edge, three of them selects a corner.
The transforms generated by the other seven terms of Eq. (B.15) are summarized
in Eq. (B.18)
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hαβγ(ccc) =
1

8

[
qαβγ(ccc) + cαr · qrβγ(cc) + cβs · qαsγ(cc) + cγt · qαβt(cc)+

+ cαr c
β
s · qrsγ(c) + cβs c

γ
t · qαst(c) + cαr c

γ
t · qrβt(c) + cαr c

β
s c
γ
t

]
hαβγ(csc) =

1

8

[
qαβγ(csc) + cαr · qrβγ(sc) + cγt · qαβt(cs) + cαr c

γ
t · qrβt(s)

]
hαβγ(scc) =

1

8

[
qαβγ(scc) + cβs · qαsγ(sc) + cγt · qαβt(sc) + cβs c

γ
t · qαst(s)

]
hαβγ(css) =

1

8

[
qαβγ(css) + cαr · qrβγ(ss)

]
hαβγ(scs) =

1

8

[
qαβγ(scs) + cβs · qαsγ(ss)

]
hαβγ(ssc) =

1

8

[
qαβγ(ssc) + cγt · qαβt(ss)

]
hαβγ(sss) =

1

8
qαβγ(sss)

. (B.18)

Inserting the hαβγ(· · · )’s back into Eq. (B.15), one recognizes the backwards trans-
forms of the inner tensor products gαβγ�hαβγ( · · · ) and the potential φjkl in the direct
space is obtained

φjkl =
∑
αβγ

w(α)w(β)w(γ)gαβγ×

×
{

cos
jαπ

n− 1
cos

kβπ

n− 1
cos

lγπ

n− 1
·hαβγ(ccc)+

+ CCS + CSC + SCC + CSS + SCS + SSC+

+ sin
jαπ

n− 1
sin

kβπ

n− 1
sin

lγπ

n− 1
·hαβγ(sss)

}
= Fccc[g

αβγ � hαβγ(ccc)] + . . .+ Fsss[g
αβγ � hαβγ(sss)] .

(B.19)

The overall calculation is quite involved. For the forward step eight three dimen-
sional DFTs over the whole grid volume need to be performed, 48 over the faces and
96 along the edges. And just as many for the backward step. The FFTW API allows
one to group these together, such that all faces or edges corresponding to a certain
transform, such as CSC, can be transformed with a single function call.

Fig. B.1 shows a simple verification on a 33× 33× 33 grid. n = 2m + 1 is optimal
for both the DCT-I and the DST-I transform, since the effective size of the latter is
n−2. A single charge q = +1 has been placed at various critical spots on the grid and
the result of the convolution is compared with the direct calculation. This way one
can ensure that no face, edge, or corner has been skipped, either during the forward
or during the backward Fourier transforms, nor have any indices been reversed, in
which case a charge at one side of the grid would generate a potential centered at the
opposite side.

The method of the image charges mentioned above would have saved all three-
dimensional transforms but SSS. The simplest finite difference representation of the
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Figure B.1: Simple checks of the Fourier based implementation on a 33×33×33 grid
with spacing ∆x = ∆y = ∆z = 1. A single charge q = +1 has been placed at critical
spots on the grid, such as corners, faces or center, to check for possible summation
errors or missing terms. The generator g(r) was the v-shaped potential Eq. (4.40) for
a = 1.4. ◦: numerical convolution; dashed line: direct plot. (a) charge at a corner,
(−16,−16,−16), V along the (x,−16,−16) line is shown; (b) grid center, (0, 0, 0), V
along (x, 0, 0); (c) on the (x, y, 16) face, at (0, 0, 16), V along (0, 0, z); (d) the same,
V along (0, y, 16).

Poisson equation is

(
∆x−2δ2

x + ∆y−2δ2
y + ∆y−2δ2

y

)
ϕjkl = −4πρjkl (B.20)

where δ2
x = { · }j+1 + { · }j−1 − 2{ · }j is the differencing operator.

One simulates a grounded metallic layer around the grid by taking zero Dirichlet
boundary conditions for ϕjkl. Only sine expansions along each coordinate are required
in this case and the Poisson equation in the Fourier space reads simply

φαβγ = qαβγ/Cαβγ (B.21)
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with

Cαβγ =
∆x∆y∆z

2π

[
1

∆x2

(
1− cos

απ

n− 1

)
+

1

∆y2

(
1− cos

βπ

n− 1

)
+

+
1

∆z2

(
1− cos

γπ

n− 1

)]
. (B.22)

Applying Eq. (B.20) one finds a set of induced charges on the “metallic” boundary
which is different from the prescribed ones. Thus, one can consider the prescribed
charge distribution as a superposition of the one which generates φ and some correc-
tions charges δq. Obviously, the potential δφ arising from the later needs to be added
to φ to obtain the full free space potential ϕ. δφ is obtained from δq by performing
the full three-dimensional convolution (B.1), which simplifies to the set of 48 two-
and 96 one-dimensional transforms selected by the cαr coefficients in Eqs. (B.16) and
(B.18) because the distribution δq is hollow.
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Appendix C

Inverse bremsstrahlung in one
dimension

Classical propagation of Coulomb particles faces the problem of the singular po-
tential at nucleus. If two electrons collide close to a positive ion, one of the electrons
can fall onto a state of very low energy and the other one will be ionized with the
energy difference. The same phenomenon is known from stellar dynamics, where
three-star encounters can lead to formation of binaries. But if the singularity of the
potential represents there just a numerical overhead, requesting for propagation with
very small time steps at close encounters, it becomes a fundamental problem for ion-
electron binaries. Quantum mechanics sets a lower limit for the total energy of the
interaction, namely the energy of the lowest bound state, the ground state.

The simplest non-singular approximation to the Coulomb interaction is the soft-
core potential

U(r) =
1

r2 + a2
, (C.1)

which was already introduced in Sec. 4.2. In molecular dynamics a is usually cho-
sen such that the depth Z/a of the potential well corresponds to the ground state
ionization potential of the bound electron-ion system

E
(Z−1)
ip =

Z

a
. (C.2)

The soft-core potential U(r) becomes harmonic close to the nucleus with the eigen-
frequency ω0 =

√
Z/a3. If a low energy particle is trapped in this effectively quadratic

region of the potential well, resonance phenomena can arise when an oscillating ex-
ternal field is applied. To avoid this artifact, a new model potential was introduced,
which is not derivable at origin

V (r) = −Z
r

(1− er/a) (C.3)

and whose eigenfrequency diverges (Eq. (4.41))

lim
E→−Z/a

ωV = lim
E→−Z

a

π

4

√
Z

a

(
E +

Z

a

)− 1
2

=∞ . (C.4)
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A frequency dependent study of the energy absorption and ionization in clusters
for the two model potentials U(r) and V (r) could not reveal any resonance like be-
havior. The only significant difference they have introduced was the height of the
ionization thresholds, which are generally lower for U(r) (see Fig. 4.9) and enhance
inner ionization. Outer ionization, as well as the IBS absorption per inner-ionized
electron were practically identical.

To extend the knowledge about the role of the interacting potential when a driving
field is present, we have continued our investigations to a very simple system: the
one dimensional motion of a single bound electron in the presence of a laser field. A
typical result is shown in Fig. C.1 for the Coulomb potential. Each full line shows the
final energy Ef of the electron after the interaction with a laser pulse as a function
of the laser frequency ω for a given initial energy Ei. The sin2 pulses are 1.18 fs long,
which corresponds to a 10 cycle pulse at ~ω = 0.47 au = 12.7 eV. The frequency of
the laser is then increased in cycle steps, until ~ω = 2.82 au = 76.73 eV is reached,
corresponding to 60 cycles within the same time frame. All pulses have the same
intensity I = 7× 1013 W/cm2. The final energy Ef is averaged over 150 initial
conditions, which are evenly distributed along the closed trajectory E = Ei in phase
space. The core singularity of the Coulomb potential is removed by means of a
canonical coordinate transform. A detailed description of the numerical methods
employed will follow at the end of this section.
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Figure C.1: One dimensional motion of an electron trapped in a Coulomb well Z = 8
and driven by a laser field, I = 7× 1013 W/cm2, T = 1.18 fs. Left: final energy Ef
averaged over 150 initial conditions; each line depicts Ef as a function of the laser
frequency ν for a given initial energy Ei; dashed line: frequency ωC as in Eq. (C.5)
of periodic motion in the potential well as function of the particle energy (swapped
axes). Right: contour map of the absorbed energy Ef −Ei; red lines: odd harmonics,
green: even harmonics.

The initial energy Ei needed not be shown, as for most of the frequencies no energy
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was absorbed on average and Ef = Ei. When Ef 6= Ei, an interesting phenomenon
of auto-resonance is observed. If the laser frequency is less than the frequency ωC of
the electron motion in the Coulomb field, the electron absorbs energy from the field.
If on the other hand the field is faster, the electron is decelerated and pushed down
into the potential well. ωC varies non-linearly with the total energy E, decreasing
with increasing E and vice-versa

ωC =

√
−E3

32
. (C.5)

Hence, sub-resonant laser frequencies drag the electron onto orbits of higher energy
E, until ωC(E) is lowered to ω. The electron is then locked onto this orbit, as the
rate of energy absorption and return become equal also. Over-resonant ω behaves
similarly, pushing the electron to lower energy. The envelope of the “lock” segments,
where the electron oscillates with the laser, is identical with the analytical expression
for ωC(E), which is shown with a dashed line. The response at higher harmonics
can also be observed, as emphasized by the contour map on the right hand side of
Fig. C.1. The red lines depict the odd harmonics, the green lines the even ones, which
tend to be cancelled due to the symmetry of the potential.
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Figure C.2: Same as Fig. C.1, but for U(r) from Eq. (C.1) and several parameters a.

The effect is similar to an auto-resonance effect proposed for the plasma beat-
wave accelerator (PBWA) (Lindberg et al. 2004), where a plasma wave is phase-
locked to the beating of two co-propagating lasers. A small chirp on one of the beams



108

drives the phased-locked plasma wave through the plasma resonance. The acceleration
process becomes thus more robust against fluctuations of the plasma frequency and
accelerating fields beyond 250 GV/m are achieved.

The one-dimensional behavior of the U(r) and V (r) potentials has also been stud-
ied, with results shown in Fig. C.2 and Fig. C.3, respectively. Emphasis has been put
on studying the behavior of the electron when the initial energy approached the bot-
tom of the potential well Ei → −Z/a, where the energy of the electron can no longer
be lowered. U(r) shows here resonant behavior, as the frequency of the electron
motion becomes independent of energy. Maximum absorption occurs as expected
when the laser frequency is close to the eigenfrequency of the harmonic potential
ω →

√
Z/a3. Comparing to Fig. C.1, one can state the response of U(r) is similar

to the Coulomb potential in magnitude, but for the wrong frequency. V (r) shows
a different behavior, where the frequency of the auto-resonance tends to follow the
Coulomb limit, but the magnitude diminishes as Ei approaches the bottom of the
well.
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Figure C.3: Same as Fig. C.1 or Fig. C.2, but for V (r) from Eq. (C.3) and the same
parameters a as in Fig. C.2.

A decision in a favor of the one or the other potential cannot be made easily. Our
three-dimensional frequency dependent investigations for Ar147 in Sec. 5.2, Fig. 5.8,
could not relate the response, that is IBS absorption per quasi-free electron, to any
shape specific, resonant or non-resonant behavior. Therefore, one should always check
for possible changes in the outcome of MD simulations when the model potential is
changed. This is negligible with IR fields, but not in cold dense systems, such as the
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ones encountered in this work.

As mentioned above, the energy absorption was averaged over 150 initial condi-
tions (qi, pi) for each initial energy Ei and laser frequency ω. These were generated
in the canonical action-angle variables representation, by choosing evenly distributed
initial angles, or phases θ in the interval [0, 2π). The phase of the laser pulse was in
turn kept constant. By definition (Landau and Lifshitz 2005, §50), one has

I =
1

2π

˛
pdq

θ =
∂S0(q, I, λ)

∂I
=

2π

T
t+ const.

=
2π

T

ˆ q

0

dq′

∂H/∂p
=

2π

T

ˆ q

0

mdq′√
2m(E − V (q′))

,

(C.6)

where S0(q, I, λ) =
´
p(q′, I, λ)dq′ is the action, I is the action variable and λ is a

slowly varying parameter describing external fields and that can be assumed constant
over one period of motion. The last equation is solved numerically to generate the
initial conditions (qi(θi), pi(θi)) for a given initial phase θi, not only for the Coulomb
potential, but also for U(q) and V (q).

Alternatively, one could hold (qi, pi) constant and only vary the phase, or the delay
of the laser. Though easier, it is longer guaranteed that the phase space is explored in
a uniform manner due to the non-constant angular velocity. Regions of lower angular
velocity θ̇ = L/mr2 sin θ would be sampled more often than others.

The equations of motion are then integrated in slightly more general framework,
which allows one to implement an adaptive time step. One introduces a fictitious
time τ (Preto and Tremaine 1999)

dt = g(q,p, t)dτ (C.7)

and takes t ≡ q0 as a new coordinate with the conjugate momentum p0 = −H. The
equations of motion in the extended phase space Q = (q0,q), P = (p0,p) read now

dQ

dτ
= g(q,p, t)

∂H

∂p
=
∂Γ

∂P
dP

dτ
= −g(q,p, t)

∂H

∂q
= − ∂Γ

∂Q

(C.8)

with the new Hamiltonian

Γ(Q,P) = g(q,p, q0)
(
H(q,p, q0) + p0

)
. (C.9)

Only those solutions on the hyper-surface Γ = 0 correspond to the trajectories in the
original phase space. The fixed time step integration in the extended phase space
corresponds thus a variable step integration ∆t = g(q,p, t)∆τ in the reduced phase
space.
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Starting from the Hamiltonian of a single electron in a potential well V (r) and an
oscillating electric field Eq(t) = E0 sinωt

H =
p2

2
+ V (q)− qE0 sinωt , (C.10)

we perform a generic canonical transform under the generator F3(Q, p) = −pf(Q),
where q = ∂F (Q, p)/∂p and P = −∂F (Q, p)/∂Q. g(Q) = [f ′(Q)]2 is then inserted
in equations (C.8) and (C.9), thereby extending the phase space to Q = (t, Q),
P = (p0, P ) with the new Hamiltonian

Γ′ =
P 2

2
+
[
f ′(Q)

]2
V (f(Q))− f(Q)

[
f ′(Q)

]2
Eq(t) + p0

[
f ′(Q)

]2
. (C.11)

For f(Q) = Q3/|Q|, one obtains q = Q3/|Q| and p = P/2|Q|, such that for the
Coulomb potential V (q) = −Z/|q|, the new Hamiltonian becomes

Γ′ =
P 2

2
− 4Z + 4p0Q

2 − 4|Q|3QEq(t) . (C.12)

The canonical equations of motion yield

∂Q

∂τ
= P

∂t

∂τ
= 4Q2

∂P

∂τ
= −8p0Q+ 16|Q|3Eq(t)

∂p0

∂τ
= 4|Q|3Q∂Eq(t)

∂t

. (C.13)

Because Γ′ is not separable, in particular because the equation of motion of coordinate
t does not depend on momenta only, one cannot apply a Verlet, or leapfrog integration
scheme. Runge-Kutta 4th order was used instead.

The above scheme turned out to actually work worse for U(r) and V (r), in partic-
ular because the effective time steps ∆t became so small when Q approached 0, that
Q could not cross over the origin. For this reason we have resorted to simple leapfrog
integration in the extended phase space with g(t) = 1, which though superfluous,
it allowed one to check the accuracy of the integration by comparing −p0 with the
energy obtained explicitly from position and momentum. Special care was paid to
V (r) at origin, where the force suddenly changes sign. V (r) was linearized there and
the propagation over the origin was performed analytically.

C.1 IBS scaling properties in three dimensions

It is possible though to design a scenario where the potentials lead to essentially
different patterns of energy absorption. The original idea was to gain insight into the
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screening properties of the electron plasma by studying frequency dependent energy
absorption while the quiver amplitude xp =

√
I/ω2 constant. Under these conditions,

Rabadan et al. (1994) have observed a resonant like behavior when investigating
the scattering of an electron on a Yukawa potential in a high frequency laser field.
Fig. C.4 shows the maximum energy transfer ∆Emax they have observed as function
of logω. ∆Emax is greatest at a frequency ωmax ∼ 1 au which is independent of the
impact energy of the electron. They also found ωmax to be largely independent of
other parameters such as the orientation with respect to the laser field or the impact
parameter of the incident electron.
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Figure C.4: Maximum energy transfer ∆Emax upon scattering of an electron on a
Yukawa potential in a laser field. The quiver amplitude was kept constant xq = 1.0 au
while the laser frequency ω was varied. Impact energy E of the electron: ×, E =
0.025 Hartree; ←, E = 0.050 Hartree; ◦, E = 0.075 Hartree; �, E = 0.10 Hartree;
+, E = 0.25 Hartree. The impact parameter was b = 2 au, the Debye length λD =
2 au. The laser field oscillated in the plane of the initial velocity and the origin of the
potential, under an angle β = 60◦ to the initial velocity. From Rabadan et al. (1994).

We performed similar investigations on a snapshot of an exploding Xe147 cluster,
which we illuminated with 2.5 fs probe pulses. The short pulse duration was necessary
to prevent cluster expansion. Only plasma properties are of interest here, for which
reason photo- and any other ionization effects were also disabled. The intensity of the
pulses was increased with increasing photon energy, such that xp = 0.2 au = ct., which
corresponds to the ponderomotive amplitude of the Hamburg experiment (Wabnitz
et al. 2002) with ~ω = 12.7 eV and I = 7× 1013 W/cm2. Moreover, we have also
varied the parameter a of the model potentials U(r) and V (r). For this reason, the
particles were propagated for another 2.5 fs before the probe pulse was applied, to
allow the plasma to equilibrate.

Fig. C.5 shows the average absorbed energy due to the applied probe pulse as a



112

1

1.5

2

2.5 0
0.5

1
1.5

2
2.50

200

400

600

800

 

hν [au]
a [au]

 

∆E
 [a

u]

0

100

200

300

400

500

600

700

800

1

1.5

2

2.5 0
0.5

1
1.5

2
2.50

200

400

600

800

 

hν [au]
λ [au] 

∆E
 [a

u]

0

100

200

300

400

500

600

700

800

Figure C.5: The role of the model potential on the response of a cluster plasma to a
short, periodic driving of variable frequency. The intensity of the 2.5 fs probe pulses
was varied along with the frequency, to keep xp = 0.2 au constant. Left: U(r); Right:
V (r). The parameter a of the model potentials was also varied.

function of the laser frequency ω and the parameter a for both U(r) and V (r). For
each parameter a, there is a frequency ω for each U(r) yields maximum absorption.
V (r) saturates at the same frequency, as the cuts along a = 1.0 and a = 1.4 confirm
in Fig. C.6. U(r) and V (r) perform to a large extend similarly with decreasing a,
when they both approach the Coulomb limit. The very high intensities involved
with the current findings should also be noted. I scales as ∼ ω4, requiring I =
3.3× 1016 W/cm2 for ~ω = 60 eV, the highest frequency investigated in Figs. C.5 and
C.6. It could be possible, under these circumstances, that the zero difference between
U(r) and V (r) observed earlier in Sec. 5.2 could be due to too low an intensity.
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Figure C.6: Cuts along the a = 1.0 and respectively a = 1.4 lines of Fig. C.5. Blue:
U(r); green V (r); dotted lines: extrapolation of the absorbed energy starting from
the lowest frequency according to Eq. (5.3), derived by Krainov (2000).

The current scenario is also a very good test for the IBS absorption rate (5.3)
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derived by Krainov (2000). According to this equation, the absorbed energy ∆E
should increase as ω4/3, because the laser intensity also increases I = x2

pω
4. The

dotted lines in Fig. C.6 extrapolate the first data point on each curve according to
this prediction. The strong deviation occurs in the whole frequency range, even in the
region where both potentials behave essentially as a pure Coulomb potential. Electron
correlation effects as well as multiple scattering, characteristic for high density plasma
were not included in (5.3). The latter was instead derived for a dilute plasma, where
at any moment in time the electron interacts with a single ion and it is not perturbed
by any other electron.
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