24 research outputs found

    Serological and Molecular Detection of Coxiella Burnetii in Clinical Samples from Veterinarians and Cattle Farm Workers from Gabrovo Region, Bulgaria

    Get PDF
    Coxiella burnetii, which causes Q fever, is a highly infectious agent that is widespread around the world.  During the last decades, the number of cases reported in Bulgaria varied from year to year. The present study aimed to determine the frequency of C. burnetii infection using ELISA and conventional PCR among freelance veterinarians and cattle farm workers in Gabrovo province, Bulgaria. In the period April 2020 to June, 2021 a total of 154 blood samples of target group was tested in the National Reference Laboratory of Cell cultures, rickettsia and oncogenic viruses (NRL CCROV) at NCIPD - Sofia. Diagnosis of C. burnetii was performed by indirect enzyme-linked immunosorbent assay ELISA (anti-Coxiella burnetii ph. II IgG/IgM) and by end-point PCR technique (to detect the sodB gene region of C. burnetii). By indirect ELISA assay of the tested 154 clinical samples, anti-C. burnetii positive ph. II IgM antibodies were registered in 37% of samples. A relatively high percentage are affected in the active age between 50-60 years old. Anti-C. burnetii positive ph. II IgG antibodies were proven at 50% of tested samples. A positive PCR signal for C. burnetii DNA was obtained at 37/154 (20% of samples) and follows the above reported trend of acute infection of active age patients. Around 10% of tested samples were positive for three C. burnetii laboratory markers. We conclude that Q fever is endemic in Bulgaria. More research is necessary in different Bulgarian regions to set the human risk groups, to diagnose acute and chronic Q fever and to determine the economic impact of Q fever in the cattle industry. In the NRL CCROV was developed diagnostic scheme including complex methods to improve early laboratory diagnosis of C. burnetii, allowing taking proper treatment of suspected with Q fever patients

    Mini Review: Q Fever (Coxiellosis): Epidemiology, Pathogenesis and Current Laboratory Diagnosis

    Get PDF
    Q fever is zooantroponozis with global distribution caused by the strictly intracellular bacterium Coxiella burnetii. Causative agent of Q fever is an obligate intracellular parasite, classified in the genus Coxiella, family Coxiellaceae, class Gammaproteobacteria. The importance of the disease was assessed both in terms of human health and the serious economic damage they cause on livestock. Clinical manifestation of Q fever in humans is characterized by a wide variety - from asymptomatic infection to a chronic disease that can be fatal. Several basic methods have been developed to detection of C. burnetii. PCR and C. burnetii genomic sequences in whole blood are a sensitive and safe method of detection, with >90% sensitivity. A four-fold or greater rise of (CF) antibody (phase 2) between the paired sera is also diagnostic approach. Sensitivity of a four-fold rise in titre has been estimated as 73% ÷78% and specificity has been estimated as 90%, respectively. EIA is method with highly sensitive and specific. EIA detect IgM and then IgG antibodies which develop to phase II antigens in 10 to 14 days from symptom onset. IFA tests are of particular value for confirmation of acute infection and for diagnosis of chronic infection with high sensitivity. The technique detected IgG, IgM and IgA immunoglobulin classes. Suitable specimens for C. burnetii detection are blood samples. Although scientific interest in Q fever has always existed, a number of facts concerning the unforeseen nature of the epidemic, various clinical manifestations both in humans and in animals, the opportunities for chronic and other features of infection remain unclear. For this reason, timely and highly sensitive laboratory diagnosis is crucial for the outcome of the disease and subsequent treatment and monitoring

    Are atmospheric surface layer f lows ergodic?

    Get PDF
    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface. Citation: Higgins, C. W., G. G. Katul, M. Froidevaux, V. Simeonov, and M. B. Parlange (2013), Are atmospheric surface layer flows ergodic?, Geophys. Res. Lett., 40, 3342–3346, doi:10.1002/grl.50642

    Iron oxide nanoparticles - in vivo/in vitro biomedical applications and in silico studies

    Get PDF
    The review presents a broad overview of the biomedical applications of surface functionalized iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) agents for sensitive and precise diagnosis tool and synergistic combination with other imaging modalities. Then, the recent progress in therapeutic applications, such as hyperthermia is discussed and the available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical applications are addressed. This review also presents the available computer models using molecular dynamics (MD), Monte Carlo (MC) and density functional theory (DFT), as a basis for a complete understanding of the behaviour and morphology of functionalized IONPs, for improving NPs surface design and expanding the potential applications in nanomedicine

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Bulgarian Digital Mathematical Library BulDML and Czech Digital Mathematical Library DML-CZ as parts of the European Digital Mathematics Library EuDML

    Get PDF
    Abstract. The paper presents in brief the Bulgarian Digital Mathematical Library BulDML and the Czech Digital Mathematical Library DML-CZ. Both libraries use the open source software DSpace and both are partners in the European Digital Mathematics Library EuDML. We describe their content and metadata schemas; outline the architecture system and overview the statistics o
    corecore