19 research outputs found

    A Mediterranean-like dietary pattern with vitamin D3 (10 ”g/d) supplements reduced the rate of bone loss in older Europeans with osteoporosis at baseline: results of a 1-y randomized controlled trial

    Get PDF
    Background: The Mediterranean diet (MD) is widely recommended for the prevention of chronic disease, but evidence for a beneficial effect on bone health is lacking.  Objective: The aim of this study was to examine the effect of a Mediterranean-like dietary pattern [NU-AGE (New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe)] on indexes of inflammation with a number of secondary endpoints, including bone mineral density (BMD) and biomarkers of bone and collagen degradation in a 1-y multicenter randomized controlled trial (RCT; NU-AGE) in elderly Europeans.  Design: An RCT was undertaken across 5 European centers. Subjects in the intervention group consumed the NU-AGE diet for 1 y by receiving individually tailored dietary advice, coupled with supplies of foods including whole-grain pasta, olive oil, and a vitamin D3 supplement (10 ”g/d). Participants in the control group were provided with leaflets on healthy eating available in their country.  Results: A total of 1294 participants (mean ± SD age: 70.9 ±4.0 y; 44% male) were recruited to the study and 1142 completed the 1-y trial. The Mediterranean-like dietary pattern had no effect on BMD (site-specific or whole-body); the inclusion of compliance to the intervention in the statistical model did not change the findings. There was also no effect of the intervention on the urinary biomarkers free pyridinoline or free deoxypyridinoline. Serum 25-hydroxyvitamin D significantly increased and parathyroid hormone decreased (P < 0.001) in the MD compared with the control group. Subgroup analysis of individuals with osteoporosis at baseline (site-specific BMD T-score ≀ −2.5 SDs) showed that the MD attenuated the expected decline in femoral neck BMD (n = 24 and 30 in MD and control groups, respectively; P = 0.04) but had no effect on lumbar spine or whole-body BMD.  Conclusions: A 1-y intervention of the Mediterranean-like diet together with vitamin D3 supplements (10 ”g/d) had no effect on BMD in the normal age-related range, but it significantly reduced the rate of loss of bone at the femoral neck in individuals with osteoporosis. The NU-AGE trial is registered at clinicaltrials.gov as NCT01754012

    Historical Archaeologies of the American West

    Full text link

    Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli

    Get PDF
    Branched five carbon (C(5)) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C(5) alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol

    Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    No full text
    corecore