112 research outputs found

    HALOGAS: HI Observations and Modeling of the Nearby Edge-on Spiral Galaxy NGC 4565

    Get PDF
    We present 21-cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. These models provide insight concerning both the morphology and kinematics of HI above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended HI halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40 +5/-20 km/s/kpc and -30 +5/-30 km s/kpc in the approaching and receding halves, respectively. This lag is only seen within the inner ~4.75' (14.9 kpc) on the approaching half and ~4.25' (13.4 kpc) on the receding, making this a radially shallowing lag, which is now seen in the HI layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, HI is found in two companion galaxies, one of which is clearly interacting with NGC 4565.Comment: 17 pages, 16 figures, accepted for publication in the Astrophysical Journal, modified affiliatio

    The radial variation of HI velocity dispersions in dwarfs and spirals

    Get PDF
    Gas velocity dispersions provide important diagnostics of the forces counteracting gravity to prevent collapse of the gas. We use the 21 cm line of neutral atomic hydrogen (HI) to study HI velocity dispersion and HI phases as a function of galaxy morphology in 22 galaxies from The HI Nearby Galaxy Survey (THINGS). We stack individual HI velocity profiles and decompose them into broad and narrow Gaussian components. We study the HI velocity dispersion and the HI surface density, as a function of radius. For spirals, the velocity dispersions of the narrow and broad components decline with radius and their radial profiles are well described by an exponential function. For dwarfs, however, the profiles are much flatter. The single Gaussian dispersion profiles are, in general, flatter than those of the narrow and broad components. In most cases, the dispersion profiles in the outer disks do not drop as fast as the star formation profiles, derived in the literature. This indicates the importance of other energy sources in driving HI velocity dispersion in the outer disks. The radial surface density profiles of spirals and dwarfs are similar. The surface density profiles of the narrow component decline more steeply than those of the broad component, but not as steep as what was found previously for the molecular component. As a consequence, the surface density ratio between the narrow and broad components, an estimate of the mass ratio between cold HI and warm HI, tends to decrease with radius. On average, this ratio is lower in dwarfs than in spirals. This lack of a narrow, cold HI component in dwarfs may explain their low star formation activity.Comment: Accepted for publication in The Astronomical Journal, 13 pages, 10 figures, 4 table

    Accurate Recovery of H i Velocity Dispersion from Radio Interferometers

    Get PDF
    Gas velocity dispersion measures the amount of disordered motion of a rotating disk. Accurate estimates of this parameter are of the utmost importance because the parameter is directly linked to disk stability and star formation. A global measure of the gas velocity dispersion can be inferred from the width of the atomic hydrogen (H I) 21 cm line. We explore how several systematic effects involved in the production of H I cubes affect the estimate of H I velocity dispersion. We do so by comparing the H I velocity dispersion derived from different types of data cubes provided by The H I Nearby Galaxy Survey. We find that residual-scaled cubes best recover the H I velocity dispersion, independent of the weighting scheme used and for a large range of signal-to-noise ratio. For H I observations, where the dirty beam is substantially different from a Gaussian, the velocity dispersion values are overestimated unless the cubes are cleaned close to (e.g., ˜1.5 times) the noise level

    HALOGAS: HI Observations and Modeling of the Nearby Edge-on Spiral Galaxy NGC 4244

    Full text link
    We present 21-cm observations and models of the HI kinematics and distribution of NGC 4244, a nearby edge-on Scd galaxy observed as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. Our models give insight into the HI kinematics and distribution with an emphasis on the potential existence of extra-planar gas as well as a negative gradient in rotational velocity with height above the plane of the disk (a lag). Our models yield strong evidence against a significantly extended halo and instead favor a warp component along the line of sight as an explanation for some of the observed thickening of the disk. Based on these models, we detect a lag of -9 +3/-2 km s-1 kpc-1 in the approaching half and -9 +/-2 km s-1 kpc-1 in the receding half. This lag decreases in magnitude to -5+/-2 km s-1 kpc-1 and -4+/-2 km s-1 kpc-1 near a radius of 10 kpc in the approaching and receding halves respectively. Additionally, we detect several distinct morphological and kinematic features including a shell that is probably driven by star formation within the disk.Comment: 18 pages, 14 figures, Full resolution version may be found at: http://www.astron.nl/halogas/papers/NGC4244.Zschaechner.arXiv.p

    Imaging Fabry-Perot Spectroscopy of NGC 5775: Kinematics of the Diffuse Ionized Gas Halo

    Full text link
    We present imaging Fabry-Perot observations of Halpha emission in the nearly edge-on spiral galaxy NGC 5775. We have derived a rotation curve and a radial density profile along the major axis by examining position-velocity (PV) diagrams from the Fabry-Perot data cube as well as a CO 2-1 data cube from the literature. PV diagrams constructed parallel to the major axis are used to examine changes in azimuthal velocity as a function of height above the midplane. The results of this analysis reveal the presence of a vertical gradient in azimuthal velocity. The magnitude of this gradient is approximately 1 km/s/arcsec, or about 8 km/s/kpc, though a higher value of the gradient may be appropriate in localized regions of the halo. The evidence for an azimuthal velocity gradient is much stronger for the approaching half of the galaxy, although earlier slit spectra are consistent with a gradient on both sides. There is evidence for an outward radial redistribution of gas in the halo. The form of the rotation curve may also change with height, but this is not certain. We compare these results with those of an entirely ballistic model of a disk-halo flow. The model predicts a vertical gradient in azimuthal velocity which is shallower than the observed gradient, indicating that an additional mechanism is required to further slow the rotation speeds in the halo.Comment: 18 pages, 18 figures. Uses emulateapj.cls. Accepted for publication in Ap

    Integral Field Unit Observations of NGC 891: Kinematics of the Diffuse Ionized Gas Halo

    Get PDF
    We present high and moderate spectral resolution spectroscopy of diffuse ionized gas (DIG) emission in the halo of NGC 891. The data were obtained with the SparsePak integral field unit at the WIYN Observatory. The wavelength coverage includes the [NII]6548,6583, Halpha, and [SII]6716,6731 emission lines. Position-velocity (PV) diagrams, constructed using spectra extracted from four SparsePak pointings in the halo, are used to examine the kinematics of the DIG. Using two independent methods, a vertical gradient in azimuthal velocity is found to be present in the northeast quadrant of the halo, with magnitude approximately 15-18 km/s/kpc, in agreement with results from HI observations. The kinematics of the DIG suggest that this gradient begins at approximately 1 kpc above the midplane. In another part of the halo, the southeast quadrant, the kinematics are markedly different, and suggest rotation at about 175 km/s, much slower than the disk but with no vertical gradient. We utilize an entirely ballistic model of disk-halo flow in an attempt to reproduce the kinematics observed in the northeast quadrant. Analysis shows that the velocity gradient predicted by the ballistic model is far too shallow. Based on intensity cuts made parallel to the major axis in the ballistic model and an Halpha image of NGC 891 from the literature, we conclude that the DIG halo is much more centrally concentrated than the model, suggesting that hydrodynamics dominate over ballistic motion in shaping the density structure of the halo. Velocity dispersion measurements along the minor axis of NGC 891 seem to indicate a lack of radial motions in the halo, but the uncertainties do not allow us to set firm limits.Comment: 31 pages, 10 figures. Accepted for publication in the Astrophysical Journa

    Signatures from a merging galaxy cluster and its AGN population : LOFAR observations of Abell 1682

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOWe present LOFAR data from 110-180 MHz of the merging galaxy cluster Abell 1682, alongside archival optical, radio, and X-ray data. Our images of 6 arcsec in resolution at low frequencies reveal new structures associated with numerous radio galaxies in the cluster. At a resolution of 20 arcsec we see diffuse emission throughout the cluster over hundreds of kiloparsecs, indicating particle acceleration mechanisms are in play as a result of the cluster merger event and powerful active galactic nuclei. We show that a significant part of the cluster emission is from an old radio galaxy with very steep spectrum emission (having a spectral index of α < -2.5). Furthermore, we identify a new region of diffuse steep-spectrum emission (α < -1.1) as a candidate for a radio halo which is co-spatial with the centre of the cluster merger. We suggest its origin as a population of old and mildly relativistic electrons left over from radio galaxies throughout the cluster which have been re-accelerated to higher energies by shocks and turbulence induced by the cluster merger event. We also note the discovery of six new giant radio galaxies in the vicinity of Abell 1682.Peer reviewedFinal Accepted Versio

    Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR

    Get PDF
    9 figures, 6 tables and 17 pages. This paper is part of the LOFAR surveys data release 1 and has been accepted for publication in a special edition of A&A that will appear in Feb 2019, volume 622. The catalogues and images from the data release will be publicly available on lofar-surveys.org upon publication of the journal. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density (ΣSFR\Sigma_{\rm SFR}) at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio ΣSFR\Sigma_{\rm SFR} maps using the Condon relation. We compared these maps with hybrid ΣSFR\Sigma_{\rm SFR} maps from a combination of GALEX far-ultraviolet and Spitzer 24 μm\mu\rm m data using plots tracing the relation at 1.2×1.21.2\times 1.2-kpc2^2 resolution. The RC emission is smoothed with respect to the hybrid ΣSFR\Sigma_{\rm SFR} owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation (ΣSFR)RC[(ΣSFR)hyb]a(\Sigma_{\rm SFR})_{\rm RC} \propto [(\Sigma_{\rm SFR})_{\rm hyb}]^{a}, where a=0.59±0.13a=0.59\pm 0.13 (140 MHz) and a=0.75±0.10a=0.75\pm 0.10 (1365 MHz). Both relations have a scatter of σ=0.3 dex\sigma = 0.3~\rm dex. If we restrict ourselves to areas of young CREs (α>0.65\alpha > -0.65; IνναI_\nu \propto \nu^\alpha), the relation becomes almost linear at both frequencies with a0.9a\approx 0.9 and a reduced scatter of σ=0.2 dex\sigma = 0.2~\rm dex. We then simulate the effect of CRE transport by convolving the hybrid ΣSFR\Sigma_{\rm SFR} maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are l=1l=1-5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of D=(0.13D=(0.13-1.5)×1028cm2s11.5) \times 10^{28} \rm cm^2\,s^{-1} at 1 GeV. A RC-SFR relation at 1.41.4 GHz can be exploited to measure SFRs at redshift z10z \approx 10 using 140140 MHz observations.Peer reviewe

    Smooth HI Low Column Density Outskirts In Nearby Galaxies

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astronomical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-3881/aabbaa.The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H i) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H i at a column density of ∼5 × 10 19 cm -2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H i disks, we study the azimuthally averaged H i column density profiles of 17 nearby galaxies from the H i Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H i emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H i maps. With this method, we improve our sensitivity to outer-disk H i emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H i radial profiles: the alleged signature of ionization by the extragalactic background.Peer reviewedFinal Accepted Versio
    corecore