18 research outputs found

    The NR4A subgroup: immediate early response genes with pleiotropic physiological roles

    Get PDF
    The nuclear hormone receptor (NR) superfamily includes the orphan NR4A subgroup, comprised of Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3). These NRs are classified as early response genes, are induced by a diverse range of signals, including fatty acids, stress, growth factors, cytokines, peptide hormones, phorbol esters, neurotransmitters, and physical stimuli (for example magnetic fields, shear stress). The ability to sense and rapidly respond to changes in the cellular environment thus appears to be a hallmark of this subfamily. The members of the NR4A subgroup are well conserved in the DNA binding domain (~91-95%) and the C-terminal ligand-binding domain (~60%), but are divergent in the N-terminal AB region. These receptors bind as monomers, homodimers and heterodimers with RXRs (to mediate retinoid signaling) to different permutations of the canonical NR binding motif. The NR4A subgroup activates gene expression in a constitutive ligand-independent manner. NR4A-mediated trans-activation (LBD) involves unusually active N-terminal AF-1 domains that mediate coactivator recruitment. Moreover, the NR4A receptors encode atypical LBDs and AF-2 domains. For example, the LBDs contain no cavity due to bulky hydrophobic residue side chains, and lack the classical coactivator-binding cleft constituted by helices 3, 4 and 12. However, a hydrophobic patch exists between helices 11 and 12, that encodes a novel cofactor interface that modulates transcriptional activity. In line with the pleiotropic physiological stimuli that induce the NR4A subgroup, these orphan NRs have been implicated in cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, carcinogenesis and atherogenesis

    The chicken ovalbumin upstream promoter-transcription factors modulate genes and pathways involved in skeletal muscle cell metabolism

    Get PDF
    The chicken ovalbumin upstream promoter-transcription factors ( COUP-TFs) are orphan members of the nuclear hormone receptor ( NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle ( and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for similar to 40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA ( siRNA)-mediated attenuation of Coup-TfI and II ( mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization ( including Ppar alpha, Fabp3, and Cpt-1). This was coupled to reduced fatty acid beta-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of classical liver X receptor ( LXR) target genes involved in reverse cholesterol transport ( Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation

    The coactivator-associated arginine methyltransferase is necessary for muscle differentiation - CARM1 coactivates myocyte enhancer factor-2

    Get PDF
    Studies with the myogenic basic helix-loop-helix and MADS box factors suggest that efficient transactivation is dependent on the recruitment of the steroid receptor coactivator (SRC) and the cofactors p300 and p300/CBP-associated factor. SRCs have been demonstrated to recruit CARM1 (coactivator-associated arginine methyltransferase-1), a member of the S-adenOSyl-L-methionine-dependent PRMTI-5 (protein-arginine N-methyltransferase-1-5) family, which catalyzes the methylation of arginine residues. This prompted us to investigate the functional role of CARM1/PRMT4 during skeletal myogenesis. We demonstrate that CARM1 and the SRC cofactor GRIP-1 cooperatively stimulate the activity of myocyte enhancer factor-2C (MEF2C). Moreover, there are direct interactions among MEF2C, GRIP-1, and CARM1. Chromatin immunoprecipitation demonstrated the in vivo recruitment of MEF2 and CARM1 to the endogenous muscle creatine kinase promoter in a differentiation-dependent manner. Furthermore, CARM1 is expressed in somites during embryogenesis and in the nuclei of muscle cells. Treatment of myogenic cells with the methylation inhibitor adenosine dialdehyde or tet-regulated CARM1 antisense expression did not affect expression of MyoD. However, inhibition of CARM1. inhibited differentiation and abrogated the expression of the key transcription factors (myogenin and MEF2) that initiate the differentiation cascade. This work clearly demonstrates that the arginine methyltransferase CARM1 potentiates myogenesis and supports the positive role of arginine methylation in mammalian differentiation

    ROR alpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells - Caveolin-3 and CPT-1 are direct targets of ROR

    Get PDF
    The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis

    Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease

    No full text
    Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd

    The Nuclear Receptor Nor-1 Is a Pleiotropic Regulator of Exercise-Induced Adaptations

    No full text
    Exercise induces various physical and metabolic changes in skeletal muscle that adaptively reprograms this tissue to current physiological and environmental demands. Underlying these changes are broad modifications to gene expression. We postulate that the nuclear hormone receptor, Nor-1, is activated after exercise, and this transcription factor modifies gene expression to drive the molecular and cellular adaptations associated with contractile reorganization

    “Rev-erbs” regulate gene expression events in various species and tissues

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? "</p><p>Nuclear Receptor Signaling 2006;4():-.</p><p>Published online 28 Apr 2006</p><p>PMCID:PMC1472670.</p><p>Copyright © 2006, Ramakrishnan and Muscat. This is an open-access article distributed under the terms of the Creative Commons Non-Commercial Attribution License, which permits unrestricted non-commercial use distribution and reproduction in any medium, provided the original work is properly cited. </p> Genes listed include primary and secondary targets that have been documented in the literature

    The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation

    No full text
    Nuclear receptor-mediated activation of transcription involves coactivation by cofactors collectively denoted the steroid receptor coactivators (SRCs). The process also involves the subsequent recruitment of p300/CBP and PCAF to a complex that synergistically regulates transcription and remodels the chromatin. PCAF and p300 have also been demonstrated to function as critical coactivators for the muscle-specific basic helix–loop–helix (bHLH) protein MyoD during myogenic commitment. Skeletal muscle differentiation and the activation of muscle-specific gene expression is dependent on the concerted action of another bHLH factor, myogenin, and the MADS protein, MEF-2, which function in a cooperative manner. We examined the functional role of one SRC, GRIP-1, in muscle differentiation, an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding GRIP-1 is expressed in proliferating myoblasts and post-mitotic differentiated myotubes, and that protein levels increase during differentiation. Exogenous/ectopic expression studies with GRIP-1 sense and antisense vectors in myogenic C2C12 cells demonstrated that this SRC is necessary for (1) induction/activation of myogenin, MEF-2, and the crucial cell cycle regulator, p21, and (2) contractile protein expression and myotube formation. Furthermore, we demonstrate that the SRC GRIP-1 coactivates MEF-2C-mediated transcription. GRIP-1 also coactivates the synergistic transactivation of E box-dependent transcription by myogenin and MEF-2C. GST-pulldowns, mammalian two-hybrid analysis, and immunoprecipitation demonstrate that the mechanism involves direct interactions between MEF-2C and GRIP-1 and is associated with the ability of the SRC to interact with the MADS domain of MEF-2C. The HLH region of myogenin mediates the direct interaction of myogenin and GRIP-1. Interestingly, interaction with myogenic factors is mediated by two regions of GRIP-1, an amino-terminal bHLH–PAS region and the carboxy-terminal region between amino acids 1158 and 1423 (which encodes an activation domain, has HAT activity, and interacts with the coactivator-associated arginine methyltransferase). This work demonstrates that GRIP-1 potentiates skeletal muscle differentiation by acting as a critical coactivator for MEF-2C-mediated transactivation and is the first study to ascribe a function to the amino-terminal bHLH–PAS region of SRCs

    The Orphan Rev-erb nuclear receptors: A link between Metabolism, Circadian rhythm and inflammation?

    No full text
    Nuclear hormone receptors (NRs) function as ligand dependent DNA binding proteins that translate physiological/nutritional signals into gene regulation. Dysfunctional NR signaling leads to many disorders in reproduction, inflammation, and metabolism. The opportunity to identify novel regulatory pathways in the context of human health and disease drives the challenge to unravel the biological function of the "orphan nuclear hormone receptors". For example, the Rev-erb (NR1D) subgroup (Rev-erbalpha/NR1D1 and Rev-erbbeta/NR1D2) of orphan NRs are transcriptional silencers and negative regulators of RORalpha mediated trans-activation. The NR1D subgroup is highly enriched in peripheral tissues with onerous energy demands including skeletal muscle, brown and white adipose, brain, liver and kidney. This alludes to the involvement of this subgroup in metabolism. In this context, Rev-erbalpha-/- mice have a dyslipidemic phenotype. Recent studies in vascular smooth and skeletal muscle cells also suggest that the NR1D subgroup modulates inflammation by regulating IkappaBalpha/NFkappaB dependent gene expression. Rev-erbalpha has been identified as a critical regulator (and target) of circadian rhythm, a factor in blood pressure control and inflammation. Finally, two recent reports have demonstrated: (i) lithium mediated regulation of Rev-erbalpha stability and (ii) E75 (the Drosophila orthologue of human Rev-erbalpha) is tightly bound by heme, and functions as a "gas sensor" through interaction with CO/NO and interferes with the repression of DHR3 (the Drosophila orthologue of human RORalpha). In conclusion, the role of these receptors at the cross-roads of metabolism, inflammation, and circadian cycling underscores the importance of understanding the organ-specific function of the NR1D subgroup in homeostasis

    Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target

    No full text
    dUTP pyrophosphatase catalyses hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and inorganic pyrophosphate (PPi). Elimination of dUTP is vital since its misincorporation into DNA by DNA polymerases can initiate a damaging iterative repair and misincorporation cycle, resulting in DNA fragmentation and cell death. The anti-tumour activity of folate agonists and thymidylate synthase inhibitors is thought to rely on dUTP misincorporation. Furthermore, retroviral cDNA production may be particularly susceptible to the effects of dUTP misincorporation by virtue of the error-prone nature of reverse trans criptase. Consequently, dUTPase activity is an ideal point of intervention in both chemotherapy and anti-retroviral therapy. In particular, the dUTPase encoded by a human endogenous retrovirus (HERV-K) has been suggested to complement HIV infection and so is an attractive target for specific inhibition. Hence, we used site photoaffinity labelling, site-directed mutagenesis and molecular modelling to assign catalytic roles to the conserved amino acid residues in the active site of the HERV-K dUTPase and to identify structural differences with other dUTPase enzymes. We found that dUTP photoaffinity labelling was specific for a β-hairpin motif in HERV-K dUTPase. Mutagenesis of aspartate residues Asp84 and 86 to asparagine within this β-hairpin showed the carboxylate moiety of both residues was required for catalysis but not for dUTP binding. An increase in the pKaof both aspartate residues brought about by substitution of a serine residue with a glutamate residue adjacent to the aspartate residues increased activity by a factor of 1.67 at pH 8.0, implicating general base catalysis as the enzyme’s catalytic mechanism. Conservative mutagenesis of Tyr87 to Phe resulted in a sevenfold reduction of dUTPase activity and a 3.3-fold reduction in binding activity, whilst substitution with an isoleucine residue totally abolished both catalytic activity and dUTP binding, suggesting that binding/activity is dependent on an aromatic side-chain at the base of the hairpin. Comparison of a homology-based three-dimensional model structure of HERV-K dUTPase with a crystallographic structure of the human dUTPase revealed displacement of a conserved α-helix in the HERV-K enzyme causing expansion of the HERV-K active site. This expansion may be responsible for the ability of the HERV-K enzyme to hydrolyse dTTP and bind the bulkier dNTPs in contrast to the majority of dUTPases which are highly specific for dUTP. Knowledge of the dUTPase catalytic mechanism and the distinctive topography of the HERV-K active site provides a molecular basis for the design of HERV-K dUTPase-specific inhibitors
    corecore