291 research outputs found
PMI: A Delta Psi(m) Independent Pharmacological Regulator of Mitophagy
Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy
Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy
Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control
A Propositional CONEstrip Algorithm
We present a variant of the CONEstrip algorithm for checking whether the origin lies in a finitely generated convex cone that can be open, closed, or neither. This variant is designed to deal efficiently with problems where the rays defining the cone are specified as linear combinations of propositional sentences. The variant differs from the original algorithm in that we apply row generation techniques. The generator problem is WPMaxSAT, an optimization variant of SAT; both can be solved with specialized solvers or integer linear programming techniques. We additionally show how optimization problems over the cone can be solved by using our propositional CONEstrip algorithm as a preprocessor. The algorithm is designed to support consistency and inference computations within the theory of sets of desirable gambles. We also make a link to similar computations in probabilistic logic, conditional probability assessments, and imprecise probability theory
Laboratory and field studies of ice-nucleating particles from open-lot livestock facilities in Texas
In this work, an abundance of ice-nucleating particles (INPs) from livestock
facilities was studied through laboratory measurements from cloud-simulation chamber experiments and field investigation in the Texas Panhandle. Surface
materials from two livestock facilities, one in the Texas Panhandle and
another from McGregor, Texas, were selected as dust proxies for laboratory
analyses. These two samples possessed different chemical and biological
properties. A combination of aerosol interaction and dynamics in the
atmosphere (AIDA) measurements and offline ice spectrometry was used to
assess the immersion freezing mode ice nucleation ability and efficiency of
these proxy samples at temperatures above −29 ∘C. A dynamic
filter processing chamber was also used to complement the freezing
efficiencies of submicron and supermicron particles collected from the AIDA
chamber. For the field survey, periodic ambient particle sampling took place
at four commercial livestock facilities from July 2017 to July 2019. INP
concentrations of collected particles were measured using an offline
freezing test system, and the data were acquired for temperatures between −5 and −25 ∘C.
Our AIDA laboratory results showed that the freezing spectra of two
livestock dust proxies exhibited higher freezing efficiency than previously
studied soil dust samples at temperatures below −25 ∘C. Despite
their differences in composition, the freezing efficiencies of both proxy
livestock dust samples were comparable to each other. Our dynamic filter
processing chamber results showed on average approximately 50 %
supermicron size dominance in the INPs of both dust proxies. Thus, our
laboratory findings suggest the importance of particle size in immersion
freezing for these samples and that the size might be a more important factor for immersion freezing of livestock dust than the composition. From a
3-year field survey, we measured a high concentration of ambient INPs of 1171.6 ± 691.6 L−1 (average ± standard error) at −25 ∘C for aerosol particles collected at the downwind edges of
livestock facilities. An obvious seasonal variation in INP concentration,
peaking in summer, was observed, with the maximum at the same temperature exceeding 10 000 L−1 on 23 July 2018. The observed high INP
concentrations suggest that a livestock facility is a substantial source of
INPs. The INP concentration values from our field survey showed a strong
correlation with measured particulate matter mass concentration, which
supports the importance of size in ice nucleation of particles from
livestock facilities.</p
Recoil Polarization Measurements for Neutral Pion Electroproduction at Q^2=1 (GeV/c)^2 Near the Delta Resonance
We measured angular distributions of differential cross section, beam
analyzing power, and recoil polarization for neutral pion electroproduction at
Q^2 = 1.0 (GeV/c)^2 in 10 bins of W across the Delta resonance. A total of 16
independent response functions were extracted, of which 12 were observed for
the first time. Comparisons with recent model calculations show that response
functions governed by real parts of interference products are determined
relatively well near 1.232 GeV, but variations among models is large for
response functions governed by imaginary parts and for both increases rapidly
with W. We performed a nearly model-independent multipole analysis that adjusts
complex multipoles with high partial waves constrained by baseline models.
Parabolic fits to the W dependence of the multipole analysis around the Delta
mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that
are distinctly larger than those from Legendre analysis of the same data.
Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at
W=1.232 GeV, consistent with recent models, while the traditional Legendre
analysis gives the opposite sign because its truncation errors are quite
severe. Finally, using a unitary isobar model (UIM), we find that excitation of
the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01)
GeV^(-1/2) at Q^2=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling
over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but
the UIM does not reproduce the imaginary parts of 0+ multipoles well.Comment: 60 pages, 54 figure
Measurement of the Transverse-Longitudinal Cross Sections in the p (e,e'p)pi0 Reaction in the Delta Region
Accurate measurements of the p(e,e?p)pi0 reaction were performed at
Q^2=0.127(GeV/c)^2 in the Delta resonance energy region. The experiments at the
MIT-Bates Linear Accelerator used an 820 MeV polarized electron beam with the
out of plane magnetic spectrometer system (OOPS). In this paper we report the
first simultaneous determination of both the TL and TL? (``fifth" or polarized)
cross sections at low Q^{2} where the pion cloud contribution dominates the
quadrupole amplitudes (E2 and C2). The real and imaginary parts of the
transverse-longitudinal cross section provide both a sensitive determination of
the Coulomb quadrupole amplitude and a test of reaction calculations.
Comparisons with model calculations are presented. The empirical MAID
calculation gives the best overall agreement with this accurate data. The
parameters of this model for the values of the resonant multipoles are
|M_{1+}(I=3/2)|= (40.9 \pm 0.3)10^{-3}/m_pi, CMR= C2/M1= -6.5 \pm 0.3%,
EMR=E2/M1=-2.2 \pm 0.9%, where the errors are due to the experimental
uncertainties.Comment: 10 pages, 3 figures, minor corrections and addition
A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19
IntroductionThe current COVID-19 pandemic caused by the SARS-CoV-2 virus has impacted the delivery of dental care globally and has led to re-evaluation of infection control standards. However, lack of clarity around what is known and unknown regarding droplet and aerosol generation in dentistry (including oral surgery and extractions), and their relative risk to patients and the dental team, necessitates a review of evidence relating to specific dental procedures. This review is part of a wider body of research exploring the evidence on bioaerosols in dentistry and involves detailed consideration of the risk of contamination in relation to oral surgery.MethodsA comprehensive search of Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science, LILACS and ClinicalTrials.Gov was conducted using key terms and MeSH (Medical Subject Headings) words relating to the review questions. Methodological quality including sensitivity was assessed using a schema developed to measure quality aspects of studies using a traffic light system to allow inter- and intra-study overview and comparison. A narrative synthesis was conducted for assessment of the included studies and for the synthesis of results.ResultsEleven studies on oral surgery (including extractions) were included in the review. They explored microbiological (bacterial and fungal) and blood (visible and/or imperceptible) contamination at the person level (patients, operators and assistants) and/or at a wider environmental level, using settle plates, chemiluminescence reagents or air samplers; all within 1 m of the surgical site. Studies were of generally low to medium quality and highlighted an overall risk of contaminated aerosol, droplet and splatter generation during oral surgery procedures, most notably during removal of impacted teeth using rotatory handpieces. Risk of contamination and spread was increased by factors, including proximity to the operatory site, longer duration of treatment, higher procedural complexity, non-use of an extraoral evacuator and areas involving more frequent contact during treatment.ConclusionA risk of contamination (microbiological, visible and imperceptible blood) to patients, dental team members and the clinical environment is present during oral surgery procedures, including routine extractions. However, the extent of contamination has not been explored fully in relation to time and distance. Variability across studies with regards to the analysis methods used and outcome measures makes it difficult to draw robust conclusions. Further studies with improved methodologies, including higher test sensitivity and consideration of viruses, are required to validate these findings
Recommended from our members
Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids
The treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties. We explore the regenerative potential of these organoids and demonstrate that ECOs self-organize into bile duct–like tubes expressing biliary markers following transplantation under the kidney capsule of immunocompromised mice. In addition, when seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary characteristics. The resulting bioengineered tissue can reconstruct the gallbladder wall and repair the biliary epithelium following transplantation into a mouse model of injury. Furthermore, bioengineered artificial ducts can replace the native CBD, with no evidence of cholestasis or occlusion of the lumen. In conclusion, ECOs can successfully reconstruct the biliary tree, providing proof of principle for organ regeneration using human primary cholangiocytes expanded .This work was funded by ERC starting grant Relieve IMDs (281335; L.V., N.R.F.H.), the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre (L.V., N.R.F.H., S. Sinha., F.S.), the Evelyn Trust (N.H.) and the EU FP7 grant TissuGEN (M.C.D.B.) and was supported in part by the Intramural Research Program of the NIH/NIAID (R.L.G., C.A.R.). F.S. has been supported by an Addenbrooke's Charitable Trust Clinical Research Training Fellowship and a joint MRC–Sparks Clinical Research Training Fellowship. (MR/L016761/1) A.W.J. and A.E.M. acknowledge support from EPSRC (EP/L504920/1) and an Engineering for Clinical Practice Grant from the Department of Engineering, University of Cambridge. J.B. was supported by a BHF Studentship (Grant FS/13/65/30441)
- …