
A Propositional CONEstrip Algorithm

Erik Quaeghebeur∗

Centrum Wiskunde & Informatica
Science Park 123, 1098 XG Amsterdam, Netherlands

Abstract We present a variant of the CONEstrip algorithm for check-
ing whether the origin lies in a finitely generated convex cone that can be
open, closed, or neither. This variant is designed to deal efficiently with
problems where the rays defining the cone are specified as linear combi-
nations of propositional sentences. The variant differs from the original
algorithm in that we apply row generation techniques. The generator
problem is WPMaxSAT, an optimization variant of SAT; both can be
solved with specialized solvers or integer linear programming techniques.
We additionally show how optimization problems over the cone can be
solved by using our propositional CONEstrip algorithm as a preprocessor.
The algorithm is designed to support consistency and inference compu-
tations within the theory of sets of desirable gambles. We also make a
link to similar computations in probabilistic logic, conditional probability
assessments, and imprecise probability theory.

Keywords: sets of desirable gambles, linear programming, row gener-
ation, satisfiability, SAT, PSAT, WPMaxSAT, consistency, coherence,
inference, natural extension

1 Introduction

The CONEstrip algorithm [12] determines whether a finitely generated general
convex cone contains the origin. A general convex cone can be open, closed, or
ajar, i.e., neither open nor closed. This linear programming-based algorithm is
designed for working with uncertainty models based on (non-simple) sets of desir-
able gambles [15,16,13] and their generalizations [14]. In particular, it can be used
for checking the consistency criteria such models have to satisfy—specifically,
coherence and avoiding partial loss—and for drawing deductive inferences from
such models—typically, performing natural extension.

In the CONEstrip algorithm, the so-called gambles defining the cone had to
be specified as vectors on some explicitly given, finite possibility space. The spec-
ification of the gambles as linear combinations of indicator functions of events
∗ This research was started while the author was a member of the SYSTeMS Research

Group of Ghent University and was at that time a visiting scholar at the Department
of Information and Computing Sciences of Utrecht University. It was finished during
the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. The research
leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n° 246016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301648775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Erik Quaeghebeur

belonging to some finite set often provides a more natural and economical for-
mulation of the uncertainty model.

Events can be formalized as logical propositions; an elementary event of the
underlying possibility space corresponds to a conjunction of all these proposi-
tions or their negation. The cardinality of the underlying possibility space is
therefore exponential in the number of events. So even though it is possible to
write down the gambles as vectors on the underlying possibility space and apply
the CONEstrip algorithm, this would be very inefficient: the size of the linear
programs involved is linear in the cardinality of the possibility space.

Therefore we need a variant of the algorithm that works efficiently in the
propositional context sketched. We present such a variant in this paper. It pre-
serves the structure of CONEstrip as an iteration of linear programs, each one
‘stripping away’ a superfluous part of the general cone. But now these linear
programs are solved using a row generation technique—each row corresponding
to an elementary event—as was already suggested by Walley et al. [17, Sec. 4,
comment (d)] for a CONEstrip predecessor. Only the rows necessary for solving
the linear programs are generated, and those already generated are carried over
from one linear program to the next.

So instead of solving one big problem, we solve multiple smaller ones. The
sub-problem to be solved to generate a row is WPMaxSAT, weighted partial
maximum satisfiability. This was already discovered by Georgakopoulos et al. [6,
Sec. 3] for the related dual PSAT, probabilistic satisfiability. WPMaxSAT is an
optimization variant of SAT, propositional satisfiability [4]. Both can be tackled
using binary linear programming techniques or specific algorithms [9,7,5].

The original impulse to work on this problem came from Cozman and di Ianni’s
recent contribution to the field [5], where many relevant references are listed,
among which Hansen et al.’s classic review [8] cannot remain unmentioned here.
The goal was to design a ‘direct algorithm’ [17] for sets of desirable gambles
in their full generality. To present the result, we first get (re)acquainted with
the standard CONEstrip algorithm in Section 2 and then build up towards the
propositional variant in Section 3. In Section 4, we make a link to established
problems that can be seen as special cases.

2 Preliminaries

A Representation of General Convex Cones. General convex cones can be
open, closed, or ajar, i.e., neither open nor closed. Any finitely generated general
convex cone can by definition be generated as the convex hull of a finite number
of finitely generated open cones.

Let us formalize this definition: The possibility space is denoted by 𝛺. The
set of all gambles is then 𝒢 = 𝛺 → R. Now consider a finite set ℛ0 of finite
subsets of 𝒢, each containing the generators of an open cone, then a gamble 𝑓
in 𝒢 belongs to the general cone ℛ0 if and only if the following feasibility problem

A Propositional CONEstrip Algorithm 3

has a solution:

find 𝜆𝒟 ∈ [0, 1] and 𝜈𝒟 ∈ (R>0)𝒟 for all 𝒟 in ℛ0

such that
∑︀

𝒟∈ℛ0
𝜆𝒟 = 1 and

∑︀
𝒟∈ℛ0

𝜆𝒟
∑︀
𝑔∈𝒟 𝜈𝒟,𝑔𝑔 ≤≥ 𝑓.

(1)

Here ℎ :=
∑︀

𝒟∈ℛ0
𝜆𝒟

∑︀
𝑔∈𝒟 𝜈𝒟,𝑔𝑔 ≤≥ 𝑓 represents ℎ(𝜔) ≤ 𝑓(𝜔) for all 𝜔 in 𝛺𝛤

and ℎ(𝜔) ≥ 𝑓(𝜔) for all 𝜔 in 𝛺𝛥, with 𝛺𝛤 and 𝛺𝛥 problem-specific sets that
satisfy 𝛺𝛤 ∪𝛺𝛥 = 𝛺. Using inequality instead of equality constraints allows us
to omit (up to |𝛺|) indicator functions of singletons or their negation that may
be present in the representation ℛ0.

The formulation of this problem includes strict inequalities and bilinear con-
straints. The former issue puts this problem outside of the class of standard
mathematical programming problems. The latter issue makes it a non-linear
problem, and therefore one with non-polynomial worst-case computational com-
plexity. Below, we are going to go over the solution to both issues [12].

The subscript 0 in ℛ0 indicates that it is the representation of the original
cone. In the algorithms we discuss, smaller cones will iteratively be derived from
it; their representation ℛ𝑖 gets the iteration number 𝑖 as a subscript.

The CONEstrip Algorithm. To eliminate the strict inequalities 𝜈𝒟 ∈ (R>0)𝒟

from Problem (1) we are going to replace the 𝜈𝒟 using 𝜏𝒟 ∈ (R≥1)𝒟 and 𝜎 ∈ R≥1
such that 𝜏𝒟 = 𝜎𝜈𝒟 for all 𝒟 in ℛ0:

find 𝜆𝒟 ∈ [0, 1] and 𝜏𝒟 ∈ (R≥1)𝒟 for all 𝒟 in ℛ0 and 𝜎 ∈ R≥1

s.t.
∑︀

𝒟∈ℛ0
𝜆𝒟 ≥ 1 and

∑︀
𝒟∈ℛ0

𝜆𝒟
∑︀
𝑔∈𝒟 𝜏𝒟,𝑔𝑔 ≤≥ 𝜎𝑓.

(2)

Note that we have also relaxed the convex coefficient constraint, because it gives
us the flexibility we need next, without changing the problem.

To get rid of the non-linearity, we first replace 𝜆𝒟𝜏𝒟 with new variables 𝜇𝒟
for all 𝒟 in ℛ0 and add a constraint that forces 𝜇𝒟 to behave as 𝜆𝒟𝜏𝒟:

find 𝜆𝒟 ∈ [0, 1] and 𝜇𝒟 ∈ (R≥0)𝒟 for all 𝒟 in ℛ0 and 𝜎 ∈ R≥1

s.t.
∑︀

𝒟∈ℛ0
𝜆𝒟 ≥ 1 and

∑︀
𝒟∈ℛ0

∑︀
𝑔∈𝒟 𝜇𝒟,𝑔𝑔 ≤≥ 𝜎𝑓

𝜆𝒟 ≤ 𝜇𝒟 ≤ 𝜆𝒟𝜇𝒟 for all 𝒟 in ℛ0.

(3)

Notice that now 𝜆𝒟 ∈ {0, 1} for any solution, functioning as a switch between
𝜇𝒟 = 0𝜏𝒟 = 0 and 𝜇𝒟 = 1𝜏𝒟 ∈ (R≥1)𝒟, so that 𝜇𝒟/𝜎 effectively behaves
as 𝜆𝒟𝜈𝒟.

We could replace the non-linear constraints 𝜇𝒟 ≤ 𝜆𝒟𝜇𝒟 by 𝜇𝒟 ≤ 𝜆𝒟𝑀𝒟,
where 𝑀𝒟 is a positive real number ‘guaranteed to be’ larger than max 𝜇𝒟, but
this may be numerically problematic. Another approach is to remove the non-
linear constraint, causing 𝜆𝒟 = 0 to not force 𝜇𝒟 = 0 anymore—𝜆𝒟 > 0 still
forces 𝜇𝒟 ∈ (R>0)𝒟. However, by maximizing

∑︀
𝒟∈ℛ0

𝜆𝒟, the components of 𝜆
will function as a witness: if 𝜆𝒟 = 0, then we should have 𝜇𝒟 = 0. This is the
basis of the iterative CONEstrip algorithm:

4 Erik Quaeghebeur

Initialization. Set 𝑖 := 0.
Iterand. Does the linear programming problem below have a solution (�̄�, �̄�, �̄�)?

maximize
∑︀

𝒟∈ℛ𝑖
𝜆𝒟

subject to 𝜆𝒟 ∈ [0, 1] and 𝜇𝒟 ∈ (R≥0)𝒟 for all 𝒟 in ℛ𝑖 and 𝜎 ∈ R≥1∑︀
𝒟∈ℛ𝑖

𝜆𝒟 ≥ 1 and
∑︀

𝒟∈ℛ𝑖

∑︀
𝑔∈𝒟 𝜇𝒟,𝑔𝑔 ≤≥ 𝜎𝑓

𝜆𝒟 ≤ 𝜇𝒟 for all 𝒟 in ℛ𝑖.
(4)

No. 𝑓 /∈ ℛ0. Stop.
Yes. Let 𝒬 := {𝒟 ∈ ℛ𝑖 : �̄�𝒟 = 0} and set ℛ𝑖+1 := ℛ𝑖 ∖ 𝒬.

Is {𝒟 ∈ 𝒬 : �̄�𝒟 = 0} = 𝒬?
Yes. Set 𝑡 := 𝑖+ 1; 𝑓 ∈ ℛ𝑡 ⊆ ℛ0. Stop.
No. Increase 𝑖’s value by 1. Reiterate.

This algorithm terminates after at most |ℛ0| − 1 iterations. The ‘raw’ complexity
of the 𝑖th linear programming problem is polynomial in |ℛ𝑖|,

∑︀
𝒟∈ℛ𝑖

|𝒟|, and |𝛺|.
The terminal cone ℛ𝑡 is the largest ‘subcone’ of ℛ0 that contains 𝑓 in its relative
interior; so ℛ𝑡 is included in a face of ℛ0.

Optimization Problems. We can solve optimization problems with continu-
ous objective functions over the general cone: First ignore the objective and run
the CONEstrip algorithm on the representation ℛ0 to obtain a terminal repre-
sentation ℛ𝑡. Then we can optimize over the topological closure of the terminal
general cone ℛ𝑡, due to the continuity of the objective function:

optimize a continuous function of 𝜇
subject to 𝜇 ∈ (R≥0)∪ℛ𝑡 and

∑︀
𝑔∈∪ℛ𝑡

𝜇𝑔𝑔 ≤≥ 𝑓.
(5)

When the objective function is linear in 𝜇, we get a linear programming problem.

3 An Algorithm for Proposition-Based Gambles

We saw that Problem (4) was polynomial in the size |𝛺| of the possibility space.
When, as is often done, the gambles involved in the representation of the general
cone are specified as linear combinations of indicator functions of Boolean propo-
sitions, |𝛺| becomes exponential in the number of propositions. In this section
we present an approach that avoids having to deal directly with an exponential
number of constraints in such a propositional context.

How Structured Gambles Generate Structured Problems. We are not
going to dive into the propositional framework directly, but first we are going
to show how gambles that are linear combinations of a number of basic func-
tions generate a specific exploitable structure in the problems we consider. As-
sume that any gamble 𝑔 in {𝑓} ∪

⋃︀
ℛ0 can be written as a linear combination

A Propositional CONEstrip Algorithm 5∑︀
𝜑∈𝛷 𝑔𝜑𝜑 with a finite set of basic functions 𝛷 ⊂ 𝒢 and coefficients 𝑔𝜑 in R.1

Then (
∑︀

𝒟∈ℛ𝑖

∑︀
𝑔∈𝒟 𝜇𝒟,𝑔𝑔) − 𝜎𝑓 =

∑︀
𝜑∈𝛷 𝜅𝜑𝜑 if for all 𝜑 in 𝛷 we define 𝜅𝜑 as

(
∑︀

𝒟∈ℛ𝑖

∑︀
𝑔∈𝒟 𝜇𝒟,𝑔𝑔𝜑) − 𝜎𝑓𝜑. So in Problem 4 we can rewrite the constraints

on the variables 𝜇 and 𝜎 in terms of gambles as constraints on the variables 𝜅 in
terms of basic functions by adding constraints linking the 𝜅 with the 𝜇 and 𝜎.

Increasing the number of constraints in this way is productive only when we
can deal with them more efficiently. How this can be done is discussed below.

Row Generation. A standard technique for dealing with large numbers of con-
straints in mathematical programming is row generation: The original problem
is first relaxed by removing most or all constraints; in our problem, the con-
straints

∑︀
𝜑∈𝛷 𝜅𝜑𝜑 ≤≥ 0 are removed. Then, in an iterative procedure, constraints

are added back. Each such constraint or ‘row’ corresponds to some elementary
event 𝜔 in 𝛺, i.e., is of the form

∑︀
𝜑∈𝛷 𝜅𝜑𝜑(𝜔) ≤≥ 0. Each iteration the problem

is solved under the present constraints, resulting in a solution vector �̄�.
So which constraints should be added back? Constraints that are satisfied

by the present solution �̄� will have no discernable impact, as �̄� will remain
feasible. Therefore, constraints that are violated by �̄� must be generated. There
may be many violated constraints and one would want to generate deep ‘cuts’,
those that constrain 𝜅 most, as less are needed than when generating shallow
cuts. However, generating deep cuts may be computationally more complex than
generating shallow cuts, so a trade-off needs to be made between the number
of iterations and the complexity of the constraint generation process. For our
problem, argmax𝜔∈𝛺 |

∑︀
𝜑∈𝛷 �̄�𝜑𝜑(𝜔)| would generate a deep cut.

So when does the procedure stop? The original problem is infeasible if con-
straint generation is infeasible, or when an intermediate problem turns out to be
infeasible, given that it is a relaxation of the original problem. When no violated
constraint can be generated given a solution �̄�, then the problem is feasible and—
in case of an optimization problem—this solution is optimal. That the problem
stops eventually is guaranteed, because we could in principle add all constraints
back. But actually, the number of iterations needed is polynomial in the number
of variables involved [6, Lemma 2]; so, for us, polynomial in |𝛷|.

The Propositional Context. Now we take the basic functions 𝜑 in 𝛷 to be
expressed as propositional sentences. The operations permitted in such sentences
are the binary disjunction ∨—‘or’—and conjunction ∧—‘and’—, and the unary
negation ¬. The {0, 1}-valued binary variables appearing in the sentence are the
so-called literals 𝛽ℓ, where ℓ belongs to a given, finite index set ℒ𝛷 :=

⋃︀
𝜑∈𝛷 ℒ𝜑.

For example, 𝜙(𝛽) := (𝛽♠ ∨ ¬𝛽♣) ∧ 𝛽♡ is a sentence with ℒ𝜙 := {♠,♣,♡}.
The possibility space can be expressed in terms of the literals in the following

way: 𝛺 := {𝛽 ∈ {0, 1}ℒ𝛷∪ℒ𝜓 : 𝜓(𝛽) = 1}, where 𝜓 is a given sentence restricting
1 The set 𝛷 and objects that depend on it will in general also depend on the iteration

number 𝑖: as gambles are effectively removed from ℛ0 to obtain ℛ𝑖, basic functions
appearing only in the expressions for removed gambles can be removed from 𝛷. We
do not make this explicit in this paper to limit the notational burden.

6 Erik Quaeghebeur

the possible truth assignments—instantiations of 𝛽—that are valid elementary
events. For example, there is a one-to-one relationship between {1, 2, 3} and
{𝛽 ∈ {0, 1}2 : 𝛽1 ∨ 𝛽2 = 1} with element vectors viewed as bit strings. Similarly,
𝛺𝛤 := {𝛽 ∈ 𝛺 : 𝜓𝛤 (𝛽) = 1} and 𝛺𝛥 := {𝛽 ∈ 𝛺 : 𝜓𝛥(𝛽) = 1}. In a propositional
context, we use sentences instead of the corresponding sets.

Two important special cases [1,11, PSAT vs. CPA] are (i) no restrictions, i.e.,
𝜓 identically one, and (ii) ℒ𝜓 = ℒ𝛷 := 𝛷 with 𝜑(𝛽) := 𝛽𝜑 for all 𝜑 in 𝛷. It is
actually always possible to have 𝜑(𝛽) = 𝛽𝜑 by using extensions ℒ := ℒ𝜓 ∪ ℒ𝛷 ∪𝛷
and 𝜒(𝛽) := 𝜓(𝛽) ∧

⋀︀
𝜑∈𝛷

(︀
(𝛽𝜑 ∧ 𝜑(𝛽)) ∨ (¬𝛽𝜑 ∧ ¬𝜑(𝛽))

)︀
. We will do so.

The propositional sentences we consider can in principle take any form. How-
ever, it is useful for algorithm design to write such sentences in some canoni-
cal ‘normal’ form. Given the connections of this work with PSAT, probabilis-
tic satisfiability, we use the form standard in that field, CNF, conjunctive—
or clausal—normal form. In this form, a sentence is written as a conjunction
of clauses; a clause is a disjunction of literals and negated literals. Formally,
𝜒(𝛽) =

⋀︀𝑘
𝑚=1

(︀ ⋁︀
ℓ∈𝒫𝑚 𝛽ℓ ∨

⋁︀
ℓ∈𝒩𝑚

¬𝛽ℓ
)︀
, where 𝑘 is the number of conjuncts in

the CNF of 𝜒(𝛽) and 𝒫𝑚 ⊆ ℒ and 𝒩𝑚 ⊆ ℒ with 𝒫𝑚 ∩ 𝒩𝑚 = ∅ are the index
sets of the 𝑚th conjunct’s plain and negated disjuncts, respectively. The trans-
formation of any sentence 𝜙 into CNF with a number of clauses linear in the
number of operations in 𝜙 is an operation with polynomial complexity [10].

Row Generation in the Propositional Context. In the propositional con-
text, we must in each iteration generate constraints of the form

∑︀
𝜑∈𝛷𝜅𝜑𝛽𝜑 ≤≥ 0,

by generating some truth assignment 𝛽 in {0, 1}ℒ . To generate deep cuts, the
assignment 𝛽 must be such that |

∑︀
𝜑∈𝛷 �̄�𝜑𝛽𝜑| is relatively large, where �̄� is the

linear-program solution vector generated earlier in the iteration.
Generating valid truth assignments corresponds to solving a SAT problem:

determining (whether there is) a 𝛽 in {0, 1}ℒ such that 𝜒(𝛽) = 1. General SAT is
NP-complete. There exist many specialized SAT solvers. Also, any SAT problem
can be formulated as a binary linear programming problem:

find 𝛽 ∈ {0, 1}ℒ

such that
∑︀
ℓ∈𝒫𝑚 𝛽ℓ +

∑︀
ℓ∈𝒩𝑚

(1 − 𝛽ℓ) ≥ 1 for all 1 ≤ 𝑚 ≤ 𝑘.
(6)

Here, each constraint corresponds to a conjunct in the CNF of 𝜒.
A SAT solver blindly generates instances, which will typically not result in

deep cuts. To generate deep cuts, we need to take the constraint expression into
account. A binary linear programming problem that does just this presents itself:

optimize
∑︀
𝜑∈𝛷 �̄�𝜑𝛽𝜑

subject to 𝛽 ∈ {0, 1}ℒ∑︀
ℓ∈𝒫𝑚 𝛽ℓ +

∑︀
ℓ∈𝒩𝑚

(1 − 𝛽ℓ) ≥ 1 for all 1 ≤ 𝑚 ≤ 𝑘.

(7)

In case of minimization, the 𝛽-instance generated is denoted 𝛿; in case of maxi-
mization it is denoted 𝛾.

A Propositional CONEstrip Algorithm 7

In essence, this Problem (7) is WPMaxSAT, weighted partial maximum SAT:
now, part of the clauses are hard—those of 𝜒—and part of them are weighted
soft clauses—the �̄�𝜑𝛽𝜑, essentially—, whose total weight is maximized. General
WPMaxSAT is NP-hard. Specialized WPMaxSAT solvers generally accept only
positive integers as weights. The integral nature can be ensured by rescaling
and rounding, so we can assume �̄� has integer components. For positivity, the
weights are replaced by their absolute value; their sign is expressed through the
corresponding soft clause: For maximization, one must use �̄�𝜑𝛽𝜑 if �̄�𝜑 > 0 and
|�̄�𝜑|(¬𝛽𝜑) if �̄�𝜑 < 0. For minimization, one must use �̄�𝜑(¬𝛽𝜑) if �̄�𝜑 > 0 and
|�̄�𝜑|𝛽𝜑 if �̄�𝜑 < 0. A big advantage of WPMaxSAT-based row generation is that
�̄� satisfies all the constraints generated in earlier iterations, so these will not be
generated again.

A Propositional CONEstrip Algorithm. We combine the original CONE-
strip algorithm as described at the end of Section 2 with as constraint generators
SAT for bootstrapping and WPMaxSAT subsequently:

Initialization. Set 𝑖 := 0.
Are 𝜒 ∧ 𝜓𝛤 and 𝜒 ∧ 𝜓𝛥 satisfiable?
Neither. The original problem is not well-posed. Stop.
Either or both.

• If 𝜒∧𝜓𝛤 is satisfied by some 𝛾, set 𝛤0 := {𝛾}; otherwise set 𝛤0 := ∅.
• If 𝜒∧𝜓𝛥 is satisfied by some 𝛿, set 𝛥0 := {𝛿}; otherwise set 𝛥0 := ∅.

Iterand.
1. Does the linear programming problem below have a solution (�̄�, �̄�, �̄�, �̄�)?

maximize
∑︀

𝒟∈ℛ𝑖
𝜆𝒟

subject to 𝜆𝒟 ∈ [0, 1] and 𝜇 ∈ (R≥0)𝒟 for all 𝒟 in ℛ𝑖 and 𝜎 ∈ R≥1∑︀
𝒟∈ℛ𝑖

𝜆𝒟 ≥ 1 and
{︃∑︀

𝜑∈𝛷 𝜅𝜑𝛽𝜑 ≤ 0 for all 𝛽 in 𝛤𝑖∑︀
𝜑∈𝛷 𝜅𝜑𝛽𝜑 ≥ 0 for all 𝛽 in 𝛥𝑖

𝜆𝒟 ≤ 𝜇𝒟 for all 𝒟 in ℛ𝑖

where 𝜅𝜑 := (
∑︀

𝒟∈ℛ0

∑︀
𝑔∈𝒟 𝜇𝒟,𝑔𝑔𝜑) − 𝜎𝑓𝜑 ∈ R for all 𝜑 in 𝛷.

(8)

No. 𝑓 /∈ ℛ0. Stop.
Yes. Let 𝒬 := {𝒟 ∈ ℛ𝑖 : �̄�𝒟 = 0} and set ℛ𝑖+1 := ℛ𝑖 ∖ 𝒬.

2. • If 𝛤𝑖 ̸= ∅, let 𝛾 be the solution of the WPMaxSAT for maximizing∑︀
𝜑∈𝛷 �̄�𝜑𝛽𝜑 under the hard clauses 𝜒 ∧ 𝜓𝛤 ; set 𝛤𝑖+1 := 𝛤𝑖 ∪ {𝛾}.

Otherwise, set 𝛾 identically zero.
• If 𝛥𝑖 ̸= ∅, let 𝛿 be the solution of the WPMaxSAT for minimizing∑︀

𝜑∈𝛷 �̄�𝜑𝛽𝜑 under the hard clauses 𝜒 ∧ 𝜓𝛥; set 𝛥𝑖+1 := 𝛥𝑖 ∪ {𝛿}.
Otherwise, set 𝛿 identically zero.

Is
∑︀
𝜑∈𝛷 �̄�𝜑𝛾𝜑 ≤ 0 ≤

∑︀
𝜑∈𝛷 �̄�𝜑𝛿𝜑 and {𝒟 ∈ 𝒬 : �̄�𝒟 = 0} = 𝒬?

Yes. Set 𝑡 := 𝑖+ 1; 𝑓 ∈ ℛ𝑡 ⊆ ℛ0. Stop.
No. Increase 𝑖’s value by 1. Reiterate.

8 Erik Quaeghebeur

In this algorithm, the cone stripping and constraint generation iterations are
merged. This can be done because if 𝜆𝒟 = 0 for some 𝒟 in ℛ𝑖, then certainly
𝜆𝒟 = 0 when additional constraints are added.

The complexity of the algorithm is determined by (i) the number of iter-
ations: polynomial in |𝛷| [6,11] and linear in |ℛ0|; (ii) the complexity of the
‘master’ linear program: polynomial in |𝛷|, |ℛ0|, and

∑︀
𝒟∈ℛ0

|𝒟|; and (iii) the
complexity of constraint generation—in the worst case exponential in 𝑘 and
polynomial in |ℒ| [2]. So we have replaced a procedure with guaranteed expo-
nential complexity due to an exponential number of constraints by a procedure
that often has decent practical complexity. Because of the reduction to standard
problems—SAT and WPMaxSAT, or binary linear programming—advances in
solvers for those problems can directly be taken advantage of.

Before an implementation can be called mature, it must support ‘restart-
ing’ of the SAT and WPMaxSAT solvers, meaning that preprocessing—such
as variable elimination—needs to be done only once, before the first iteration.
This could provide efficiency gains similar to those obtained by algorithms for
probabilistic reasoning from the Italian school [1,3].

Optimization Problems. Again, we can solve optimization problems with
continuous objective functions over the general cone: First ignore the objective
and run the propositional CONEstrip algorithm on the representation ℛ0 to
obtain a terminal representation ℛ𝑡 and terminal instance sets 𝛥𝑡 and 𝛤𝑡. Then
we optimize over the topological closure of the terminal general cone ℛ𝑡:

Initialization. Set 𝑖 := 𝑡.
Iterand.

1. Solve the following optimization problem to obtain the solution (�̄�, �̄�):

optimize a continuous function of 𝜇

subject to 𝜇 ∈ (R≥0)∪ℛ𝑡 and
{︃∑︀

𝜑∈𝛷 𝜅𝜑𝛽𝜑 ≤ 0 for all 𝛽 in 𝛤𝑖∑︀
𝜑∈𝛷 𝜅𝜑𝛽𝜑 ≥ 0 for all 𝛽 in 𝛥𝑖

where 𝜅𝜑 := (
∑︀
𝑔∈∪ℛ𝑡

𝜇𝑔𝑔𝜑) − 𝑓𝜑 ∈ R for all 𝜑 in 𝛷.

(9)

2. • If 𝛤𝑖 ̸= ∅, let 𝛾 be the solution of the WPMaxSAT for maximizing∑︀
𝜑∈𝛷 �̄�𝜑𝛽𝜑 under the hard clauses 𝜒 ∧ 𝜓𝛤 ; set 𝛤𝑖+1 := 𝛤𝑖 ∪ {𝛾}.

Otherwise, set 𝛾 identically zero.
• If 𝛥𝑖 ̸= ∅, let 𝛿 be the solution of the WPMaxSAT for minimizing∑︀

𝜑∈𝛷 �̄�𝜑𝛽𝜑 under the hard clauses 𝜒 ∧ 𝜓𝛥; set 𝛥𝑖+1 := 𝛥𝑖 ∪ {𝛿}.
Otherwise, set 𝛿 identically zero.

Is
∑︀
𝜑∈𝛷 �̄�𝜑𝛾𝜑 ≤ 0 ≤

∑︀
𝜑∈𝛷 �̄�𝜑𝛿𝜑?

Yes. �̄� is optimal. Stop.
No. Increase 𝑖’s value by 1. Reiterate.

When the objective function is linear in 𝜇, we now get an iteration of linear
programming problems.

A Propositional CONEstrip Algorithm 9

4 Some Special Cases
The propositional CONEstrip algorithm presented in the preceding section can
be directly applied to problems in desirability theory. We here make a link with
other, more established theories by describing how the standard problems in
those theories can be encoded as problems in desirability theory. In all of the
cases discussed, 𝜓𝛤 is identically one and 𝜓𝛥 is identically zero.

A probability assessment 𝑃 (𝜑) = 𝑝𝜑 for some event 𝜑 corresponds to an open
cone with representation 𝒟𝜑,𝑝𝜑 := {𝜑 − 𝑝𝜑1, 𝑝𝜑1 − 𝜑, 1}, where 1 denotes the
constant gamble 1. For the classical PSAT problem, assessments are given for a
set 𝛷 of events and the questions is asked whether a probability mass function on
the possibility space exists that satisfies these assessments. This problem can be
solved applying the propositional CONEstrip algorithm to ℛ0 := {𝒟𝜑,𝑝𝜑 : 𝜑 ∈ 𝛷}
and 𝑓 identically zero: there is a satisfying probability mass function if and only
if the problem is infeasible; no such mass function is explicitly constructed.

This setup can be generalized to conditional probability assessments 𝑃 (𝜑|𝜙) =
𝑝𝜑|𝜙; these correspond to 𝒟(𝜑|𝜙),𝑝𝜑|𝜙

:= {𝜑 ∧ 𝜙− 𝑝𝜑|𝜙𝜙, 𝑝𝜑|𝜙𝜙− 𝜑 ∧ 𝜙,𝜙}. Given
assessments for a set 𝛷C of conditional events, the propositional algorithm can be
applied to ℛ0 := {𝒟(𝜑|𝜙),𝑝𝜑|𝜙 : (𝜑|𝜙) ∈ 𝛷C} and 𝑓 identically zero to determine
whether there exists a satisfying full conditional probability mass function.

A further generalization is to lower (and upper) conditional expectations of
gambles 𝑔 given as linear combinations of sentences: 𝑃 (𝑔|𝜙) = 𝑝𝑔|𝜙 corresponds
to 𝒟(𝑔|𝜙),𝑝𝑔|𝜙

:= {𝑔 ∧ 𝜙− 𝑝𝑔|𝜙𝜙,𝜙}. When given a set of such assessments, the
propositional CONEstrip algorithm can be applied to check whether they incur
partial loss. Also, in this context, to calculate the lower expectation via natural
extension for a gamble ℎ conditional on an event 𝜉, we need to include the set
𝒟𝜉 := {−𝜉, 0, 𝜉} in the representation ℛ0, use 𝑓 := ℎ ∧ 𝜉, and maximize the
objective 𝜇𝜉 − 𝜇−𝜉.

5 Conclusions
We presented an algorithm for checking consistency of and doing inference with
uncertainty models based on fully general finitely generated sets of desirable
gambles, with gambles specified as linear combinations of propositional sentences.
It is designed to avoid a sure exponential computational complexity. As far as
we know, it is the first such algorithm presented in the literature.

We have made a preliminary implementation and verified that the algorithm
works. Ongoing work consists in improving the implementation and setting up
numerical experiments to test the practical efficiency relative to the standard
CONEstrip algorithm—for the general problem—and other algorithms—for spe-
cial cases. Further research directions will be determined by their results.

Acknowledgments. The author wishes to thank Fabio Cozman for useful dis-
cussion of ideas at the basis of this research, Marjan van den Akker for her
enlightening explanation of linear programming row generation techniques, and
the reviewers for their many useful comments.

10 Erik Quaeghebeur

References
1. Baioletti, M., Capotorti, A., Tulipani, S., Vantaggi, B.: Simplification rules for the

coherent probability assessment problem. Annals of Mathematics and Artificial
Intelligence 35(1-4), 11–28 (2002)

2. Bansal, N., Raman, V.: Upper bounds for MaxSat: Further improved. In: Algo-
rithms and Computation, Lecture Notes in Computer Science, vol. 1741, pp. 247–
258. Springer (1999)

3. Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under
coherence: complexity and algorithms. Annals of Mathematics and Artificial Intel-
ligence 45(1–2), 35–81 (2005)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Cozman, F.G., di Ianni, L.F.: Probabilistic satisfiability and coherence checking
through integer programming. In: van der Gaag, L.C. (ed.) Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty. Lecture Notes in Artificial
Intelligence, vol. 7958, p. 145–156. Springer (2013)

6. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiabil-
ity. Journal of Complexity 4, 1–11 (1988)

7. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: van
Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representa-
tion, chap. 2, pp. 89–134. Elsevier (2008)

8. Hansen, P., Jaumard, B., de Aragão, M.P., Chauny, F., Perron, S.: Probabilistic
satisfiability with imprecise probabilities. International Journal of Approximate
Reasoning 24(2–3), 171–189 (2000)

9. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean op-
timization. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing
- SAT 2009. Lecture Notes in Computer Science, vol. 5584, pp. 495–508. Springer
(2009)

10. Prestwich, S.: CNF encodings. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, chap. 2, pp. 75–98. IOS Press (2009)

11. Pretolani, D.: Probability logic and optimization SAT: The PSAT and CPA models.
Annals of Mathematics and Artificial Intelligence 43(1-4), 211–221 (2005)

12. Quaeghebeur, E.: The CONEstrip algorithm. In: Kruse, R., Berthold, M.R.,
Moewes, C., Ángeles Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds.) Synergies
of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Soft
Computing, vol. 190, p. 45–54. Springer (2013), http://hdl.handle.net/1854/
LU-3007274

13. Quaeghebeur, E.: Desirability. In: Coolen, F.P.A., Augustin, T., de Cooman, G.,
Troffaes, M.C.M. (eds.) Introduction to Imprecise Probabilities. Wiley (2014)

14. Quaeghebeur, E., de Cooman, G., Hermans, F.: Accept & reject statement-based
uncertainty models (submitted), http://arxiv.org/abs/1208.4462

15. Walley, P.: Statistical reasoning with imprecise probabilities, Monographs on Statis-
tics and Applied Probability, vol. 42. Chapman & Hall (1991)

16. Walley, P.: Towards a unified theory of imprecise probability. International Journal
of Approximate Reasoning 24(2–3), 125–148 (2000)

17. Walley, P., Pelessoni, R., Vicig, P.: Direct algorithms for checking consistency and
making inferences from conditional probability assessments. Journal of Statistical
Planning and Inference 126(1), 119–151 (2004)

http://hdl.handle.net/1854/LU-3007274
http://hdl.handle.net/1854/LU-3007274
http://arxiv.org/abs/1208.4462

