17 research outputs found

    HNBR and its MWCNT reinforced nanocomposites : Crystalline morphology and electrical response

    Get PDF
    Morphology and electrical response of hydrogenated acrylonitrile butadiene rubber (HNBR) and its multiwall carbon nanotube (MWCNT) reinforced nanocomposites were studied by means of x-ray diffraction and broadband dielectric spectroscopy. HNBR systems were found to be semi-crystalline, with their crystallinity to increase with the addition of MWCNTs. In their dielectric spectra, four relaxation processes were detected. Ascending in relaxation time, these were attributed to: (i) interfacial polarization at the interface of crystalline and amorphous regions of HNBR and at the interface between HNBR and MWCNTs, (ii) glass to rubber transition of the amorphous part of HNBR, (iii) rearrangement of polar side groups, such as –CN, and (iv) local motions of small segments of the main elastomer chain. Electrical conductivity increases with MWCNT content and frequency increasing. The effect of temperature, on the electrical response, is more pronounced at low frequencies. The temperature dependence of the electrical conductivity strongly deviates from a pure Arrhenius behavior, signifying that the occurring conductance mechanisms do not correspond to a single thermally activated process. Relaxation dynamics imply that crystalline regions exert motion restrictions to large segments of the macromolecules in the amorphous phase and to polar parts of the systems

    Poster display IV experimental and instrumentation

    Get PDF

    Diabetes self-management arrangements in Europe: a realist review to facilitate a project implemented in six countries

    Get PDF
    Background: Self-management of long term conditions can promote quality of life whilst delivering benefits to the financing of health care systems. However, rarely are the meso-level influences, likely to be of direct relevance to these desired outcomes, systematically explored. No specific international guidelines exist suggesting the features of the most appropriate structure and organisation of health care systems within which to situate self-management approaches and practices. This review aimed to identify the quantitative literature with regard to diabetes self-management arrangements currently in place within the health care systems of six countries (The United Kingdom, The Netherlands, Norway, Spain, Bulgaria, and Greece) and explore how these are integrated into the broader health care and welfare systems in each country. Methods: The methodology for a realist review was followed. Publications of interest dating from 2000 to 2013 were identified through appropriate MeSH terms by a systematic search in six bibliographic databases. A search diary was maintained and the studies were assessed for their quality and risk of bias. Results: Following the multi-step search strategy, 56 studies were included in the final review (the majority from the UK) reporting design methods and findings on 21 interventions and programmes for diabetes and chronic disease self-management. Most (11/21, 52%) of the interventions were designed to fit within the context of primary care. The majority (11/21, 52%) highlighted behavioural change as an important goal. Finally, some (5/21, 24%) referred explicitly to Internet-based tools. Conclusions: This review is based on results which are derived from a total of at least 5,500 individuals residing in the six participating countries. It indicates a policy shift towards patient-centred self-management of diabetes in a primary care context. The professional role of diabetes specialist nurses, the need for multidisciplinary approaches and a focus on patient education emerge as fundamental principles in the design of relevant programmes. Socio-economic circumstances are relevant to the capacity to self-manage and suggest that any gains and progress will be hard to maintain during economic austerity. This realist review should be interpreted within the wider context of a whole systems approach regarding self-care support and chronic illness management

    Relaxation phenomena in rubber/layered silicate nanocomposites

    No full text

    Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin Dielectric Layers

    No full text
    Polymer solar cells have attracted tremendous interest in the highly competitive solar energy sector, due to the practical advantages they exhibit, such as being lightweight, flexible, and low cost, in stark contrast to traditional photovoltaic technologies. However, their successful commercialization is still hindered by issues related to device instability. Here, atomic layer deposition (ALD) is employed to deposit conformal ultrathin dielectrics, such as alumina (Al2O3) and zirconia (ZrO2), on top of ZnO electron extraction layers to address problems that arise from the defect-rich nature of these layers. The deposition of dielectrics on ZnO significantly improves its interfacial electronic properties, manifested primarily with the decrease in the work function of ZnO and the concomitant reduction of the electron extraction barrier as well as the reduced recombination losses. Significant efficiency enhancement is obtained with the incorporation of six ALD cycles of Al2O3 into inverted devices, using photoactive layers, that consist of poly(3-hexylthiophene):indene-C60-bisadduct or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b] thiophenediyl}):[6,6]-phenyl-C7 0-butyric acid methyl ester. More importantly, upon performing lifetime studies (over a period of 350 h), a strong improvement in polymer solar cell stability is observed when using the ALD-modified ZnO films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore