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Abstract  

 

Morphology and electrical response of hydrogenated acrylonitrile butadiene rubber 

(HNBR) and its multiwall carbon nanotube (MWCNT) reinforced nanocomposites 

were studied by means of x-ray diffraction and broadband dielectric spectroscopy. 

HNBR systems were found to be semi-crystalline, with their crystallinity to increase 

with the addition of MWCNTs. In their dielectric spectra, four relaxation processes 

were detected. Ascending in relaxation time, these were attributed to: (i) interfacial 

polarization at the interface of crystalline and amorphous regions of HNBR and at the 

interface between HNBR and MWCNTs, (ii) glass to rubber transition of the 

amorphous part of HNBR, (iii) rearrangement of polar side groups, such as –CN, and 

(iv) local motions of small segments of the main elastomer chain.  

Electrical conductivity increases with MWCNT content and frequency increasing. The 

effect of temperature, on the electrical response, is more pronounced at low frequencies. 

The temperature dependence of the electrical conductivity strongly deviates from a pure 

Arrhenius behavior, signifying that the occurring conductance mechanisms do not 

correspond to a single thermally activated process.  Relaxation dynamics imply that 

crystalline regions exert motion restrictions to large segments of the macromolecules 

in the amorphous phase and to polar parts of the systems.  
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1. Introduction 

Elastomers consist a technologically important family of engineering materials. 

Elastomers or rubbers are widely used in various fields such as automotive industry, 

building/construction, agriculture, as well as for mechanical engineering applications 

because of their low modulus, their capability to recover extremely large deformation, 

and their high internal damping [1-3].  The broad usage of elastomers, in numerous 

technological applications, created needs for improved properties and distinct 

performances, such as improved thermal resistance, chemical resistance, environmental 

stability and conservation of elasticity at low temperature. Rubber specialists are 

familiar with fillers in industrial scale, since reinforced rubbers with chalk, talk, and 

carbon black are produced and exploited in commercially available products for more 

than six decades [4,5].   

Rubbers are typical insulating and flexible materials. Nowadays, besides their 

thermomechanical performance, electrical properties are of significant interest, since 

dielectric response and conductivity in rubber composites can be tailored by controlling 

the type, the amount, and the distribution of inclusions [6,7]. Dispersing of conductive 

particles, within an insulating phase, affects both electrical polarization and 

conductance of the composite system.      

Acrylonitrile butadiene copolymer (NBR) commercially available since 1930’s has 

been widely used as an oil resistant rubber. However, NBR has been proved susceptible 
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in environmental influences such as ultraviolet light and ozone attack [8]. To overcome 

this unremunerative performance, chemists hydrogenate NBR targeting to lower the 

double bond content. The resulting compound, known as hydrogenated acrylonitrile 

butadiene rubber (HNBR), was commercially introduced in the 1980’s as a material 

suitable for permanent exposure to temperatures ranging from -25 to 150oC [2]. HNBR 

addresses advanced requirements of the automotive industry because of its excellent 

heat and oil resistance properties combined with superior mechanical performance [1]. 

HNBR is extensively used in applications such as power transmission belts, timing 

belts, sevro-hydraulic hoses, torsion vibration dampers, mounts and seals [1].  

 

HNBR is a polar elastomer wherein its acrylonitrile content may vary [1,8]. The 

presence of polar nitrile side groups minimizes the interactions with other non-polar 

chemicals, providing one of the most outstanding features of HNBR, its resistance to 

non-polar media like oils and fuels. Additionally both mechanical strength and wear 

resistance of HNBR are enhanced with increasing nitrile concentration. 

The temperature range, where an elastomer can be considered as operational, is a crucial 

factor for choosing the suitable rubber for a specific application. Typically rubbers are 

used above their glass to rubber transition temperature (Tg). Thus, the lower limit of 

this operational temperature range is determined by the polymer’s glass transition 

temperature.  

Single or multiwall carbon nanotubes (CNTs), when dispersed in a polymer matrix, 

alter the mechanical and electrical performance of the system [9,10].   

In a previous study it has been reported that HNBR/MWCNT nanocomposites further 

improve, the mechanical properties of HNBR vulcanizates, in tandem with their wear 

performance [3]. The electrically conductive character of the MWCNTs affects the 
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overall electrical behavior of the nanocomposites, namely their dielectric permittivity 

and conductivity. The latter offers an additional advantage in applications with moving 

or rotating parts fabricated with HNBR [11].  

Moving or rotating insulating parts progressively accumulate on their surface 

electrostatic charges, which easily lead to undesirable sparks, causing unexpected and 

early component’s failure. The presence of a conductive leakage current drain could 

provide a possible solution to the problem. Embedding MWCNTs within HNBR is 

beneficial to the sample’s mechanical performance and at the same time, forms 

conductive paths inside the composites system, through which leakage current could 

flow. Furthermore, the presence of conductive inclusions in an insulating medium 

enhances the electromagnetic interference (EMI) shielding effectiveness of the 

composite. Dielectric spectroscopy is a powerful experimental method for the 

investigation of polarization effects, relaxation phenomena, molecular mobility, 

interfacial effects, conductivity, phase transitions, chemical and thermal events in 

polymer and polymer matrix composites [12,13]. Dielectric spectroscopy reflects the 

interaction between matter and electromagnetic waves in a very broad frequency range, 

monitoring in real time the dynamics of bounded and unbounded charge carries within 

complex systems [12-15].     

In this work, the morphology and the electrical response of HNBR and 

MWCNT/HNBR nanocomposites, at two different filler loadings, were studied by 

means of scanning electron microscopy (SEM), x-ray diffraction (XRD) and broadband 

dielectric spectroscopy (BDS), respectively.   

 

2. Experimental 

Materials and specimens preparation 
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Commercially available peroxide curable HNBR (Therban LT VP/KA 8882 of 

Lanxess, Leverkusen, Germany) was used for the preparation of the tested specimens. 

The acrylonitrile content of HNBR was 21%, with Mooney viscosity ML (1+4) 100oC 

= 74. The composition of the HNBR mix is indicated in Table 1. The curing time of 

this base mix to reach 90% crosslinking was about 10 min at T = 175oC. In order to 

prepare the composite systems, 10 and 20 parts per hundred rubber (phr) per weight 

MWCNT (Baytubes C150 P from Bayer MaterialScience, Leverkusen, Germany) 

were added to peroxide curable HNBR. MWCNT filled HNBR mixtures were cured at 

175oC for 15 min. Details upon the preparation method can be found elsewhere [3,16]. 

 

Materials characterization 

The morphology of the prepared systems was examined by means of SEM at different 

magnification levels. SEM pictures were taken from  cyrofactured surface after Au/Pd 

alloy sputtering using a JEOL JSM-6380LA (Tokyo - Japan) device. The crystallinity 

of the specimens was deduced from XRD spectra taken with an upgraded in 

automations Philips PW 1050/25 goniometer and a CuKα broad focus X ray tube (λ= 

1.5418 Å). X- ray tube was operated at 40KV x 30 mA from a Philips PW 11300/00/60 

extra stabilized generator. Scanning step was set to 0.1 deg and all diffractograms have 

been taken in the range from 10 to 60 degrees.  

Thermal transitions were studied by means of differential scanning calorimeter (DSC) 

by employing a TA Q200 device operating at a scan rate of 10°C/min. Samples from 

each system were placed in an aluminum crucible while an empty one was serving as 

reference. Temperature was varied from -50oC to 100°C. 

The electrical response of the systems was assessed by means of BDS using an Alpha-

N Frequency Response Analyzer, supplied by Novocontrol Technologies (Hundsagen, 
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Germany). The voltage amplitude (Vrms) of the applied field was kept constant at 

1000mV, while frequency varied from 10-1 to 106 Hz. Isothermal scans were conducted 

in the temperature range from -100 to 150oC, in steps of 10oC. Temperature was 

controlled via the Quattro system and temperature fluctuations were less than 0.1oC 

(Novocontrol Technologies). The employed dielectric test cell was the BDS-1200, 

parallel-plate capacitor, with two gold-plated electrodes system, supplied also by 

Novocontrol. Cell was electrically shielded in nitrogen gas atmosphere. The whole 

experimental setup is fully automated, control and data acquisition were conducted 

simultaneously via suitable software.   

 

3. Results 

Representatitve SEM images of the cryofractured surface of the HNBR + 20phr 

MWCNTs specimen are shown in Figure 1, at three different magnifications. 

Apparently agglomerates, MWCNTs entanglements and nanodispersion co-exist. 

However, at the highest magnification (Figure 1c) a nice dispersion of MWCNTs can 

be observed.    

XRD patterns of all three examined systems are depicted in Figure 2. The semi-

crystalline nature of the HNBR samples under investigation becomes evident from the 

observed broad peak at 2 = 19o which is attributed to the long-range stereoregularity 

of the amorphous state of NR. Additional sharp peaks in the HNBR diffractograms are 

observed due to the presence of ZnO and MgO in the composition of HNBR, as well as 

peaks of Calcite (CaCO3) , an ingredient of Perkadox© which is also contained in the 

composition of HNBR (Table1). The peaks shown in Figure 2  at 2θ (degrees) angles 

of 29.41, 39.38, 47.53 and 48.53o are due to calcite, peaks at 31.78, 34.45, 36.28, 47.58 

and 56.61o are due to ZnO, while the peak at 43.02o indicates the presence of MgO [17]. 
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Varying crystallinity of HNBR with acrylonitrile content has been reported previously 

[1,8,18]. The addition of MWCNTs gives rise to an extra rather wide and shallow, 

graphite like peak (002) located at 25.5o, which is always present in the MWCNTs 

spectra, as well as in the spectra of different allotropic forms of carbon [19-21]. The 

degree of HNBR’s crystallinity for each system was calculated as the ratio of the area 

under the peak at 19o to the area under the XRD curve. Obtained values are listed in 

Table 2. The level of crystallinity for the unfilled HNBR was found to be 30.0%, which 

is very close to previous reported values with similar acrylonitrile content [18] and 

appears to increase with the incorporation of MWCNTs. Therefore, MWCNT acted as 

nucleating agent for the HNBR phase. 

The DSC thermographs of all examined materials are depicted in Figure 3. Recorded 

traces reveal the glass to rubber transition for all three systems at temperatures well 

below 0oC. Glass to rubber transition was determined via the midpoint of the transition 

by employing suitable software supplied by TA. Determined values, listed in Table 2, 

exhibit a trend to increase with MWCNT content. Besides this transition no other 

thermal event seems to be present. Thus, at first approximation, DSC traces do not 

provide support for the existence of HNBR’s crystallinity.   

The dielectric response of the unfilled HNBR is shown in Figure 4. Figure 4a presents 

the dependence of the real part of dielectric permittivity (ε) upon frequency and 

temperature. Permittivity attains high values at low frequencies and high temperatures. 

At this frequency and temperature region permanent and induced dipoles pose sufficient 

time and energy to align themselves parallel to the applied field approaching maximum 

polarization of the system. However, the significant high values of (ε) at the lower edge 

of frequency range and higher edge of temperature range indicate the presence of 

electrode polarization. Step-like transitions from high to low values of (), at 
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intermediate frequencies, imply the occurrence of relaxation processes. The latter 

becomes evident in the loss tangent versus frequency and temperature graph in Figure 

4b. Four distinct processes are recorded. At the low frequency and high temperature 

edge, the observed relaxation is attributed to Interfacial Polarization (IP) (a 

phenomenon also known as Maxwell-Wagner-Sillars effect). IP occurs in 

heterogeneous systems because of the accumulation of unbounded charges at the 

interface of the constituents. IP is a slow relaxation process (characterized by large 

relaxation time) due to the inertia of the formed dipoles to follow the alternation of the 

applied field. Semi-crystalline polymers and polymers with additives, although 

unreinforced, exhibit IP between crystalline and amorphous regions [6,7,22-24] or 

matrix and inserts [25 ]. Descending relaxation time, the next recorded process is related 

to the glass to rubber transition of the polymer matrix (α-mode). At temperatures lower 

than 0oC two even faster mechanisms are present. The first one occurring in the vicinity 

of 0oC is assigned to local motions of polar side groups of the main polymer chain (β-

mode). HNBR contains polar side groups of (-CN) which rearrange themselves under 

the influence of the electric field. Finally, the faster one recorded at the high frequency 

and low temperature edge is assigned to motions of small parts of the main polymer 

chain (-mode). It is attributed to “crankshaft” motions of the (CH2)n units of the 

HNBR’s backbone. The same process has been found to be present in the spectra of 

other rubbers as well [6,7,24].  

 

The dielectric response of the HNBR+10phr MWCNT nanocomposite is depicted in 

Figure 5, via the three-dimensional graphs of () and (tan) versus frequency and 

temperature. Both graphs are similar to those of unfilled HNBR and the same four 

relaxation processes are present. Dielectric spectra of the HNBR+20phr MWCNT 
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nanocomposite are shown in Figure 6. The real part of dielectric permittivity (Figure 

6a) attains high values in the low frequency-high temperature range, which diminish 

rapidly with the increase of frequency. Approximately at 0oC a step-like transition of 

() is recorded denoting the existence of a relaxation process. Dielectric loss tangent 

spectra (Figure 6b) for the 20phr reinforced nanocomposite deviate from the 

corresponding response of the two other examined systems. The only clearly formed 

loss peak is the one in the vicinity of 0oC, which, as already mentioned, is ascribed to 

the local rearrangement of the polar cyano groups. Additionally, a broad loss peak 

seems to be formed in the low frequency and high temperature range. The latter could 

be the result of superposition of α-mode and IP. From Figure 6b no evidence for -mode 

can be detected.   

 

 

4. Discussion 

Glass transition temperature and crystallinity of HNBR have been found to vary with 

the acrylonitrile content, although DSC curves do not always, markedly, reveal the 

existence of crystalline regions [1,8]. In our case acrylonitrile content was constant at 

21%. Melting of crystalline regions is detected as endothermic processes in DSC curves 

via the formation of peaks or humps at temperatures higher than glass to rubber 

transition temperature (Tg) and below 100oC [1,8]. Rubbers with high acrylonitrile level 

exhibit two melting peaks and their crystallinity is attributed to alternating acrylonitrile-

ethylene sequences [1].  At lower acrylonitrile content, as in our case, crystallization of 

longer methylene sequences occurs along the HNBR polymer backbone. The latter 

becomes evident via the formation of endothermic humps or shoulders right afterwards 

the glass to rubber transition zone [1,18]. Observing the DSC traces in Figure 3, one 
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can distinguish the presence of such humps in all studied systems. Under this point of 

view, thermographs provide secondary support to XRD results.  

In this study dielectric data have been analyzed by means of dielectric permittivity and 

electric modulus formalism. Electric modulus is defined as the inverse quantity of 

complex dielectric permittivity, via Equation (1): 
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where ε΄, M are the real and ε΄΄, M the imaginary parts of dielectric permittivity and 

electric modulus, respectively. Electric modulus formalism has been proved very 

efficient for analyzing dielectric data of polymer matrix nanocomposites [6,7,26,27]. 

Figure 7 presents the variation of loss modulus index (M) as a function of temperature 

at two different frequencies (a) 10 Hz and (b) 1 MHz. In Figure 7a the relatively slow 

relaxation processes are detected in the spectra of HNBR and HNBR + 10phr 

MWCNTs. These processes are glass to rubber transition (-mode) and IP. Both 

systems exhibit an -relaxation loss peak located at -30oC, a temperature close to the 

Tg value determined via DSC. Small deviations in values of Tg determined via different 

experimental techniques, should be attributed to the dynamic nature of the 

phenomenon. At higher temperatures the IP loss peak is recorded for both systems. It 

is important to point out the differences of IP between these two systems. IP in HNBR 

results from the accumulation of unbounded charges at the interfaces between 

crystalline and amorphous regions, leading to a symmetrical narrow peak 

approximately at 17oC. On the other hand, the corresponding peak of the HNBR + 10 

phr MWCNT specimen, is broader, recorded at higher temperature (approximately at 
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42oC) and is characterized by lower ordinate. In this composite besides the 

crystalline/amorphous regions interface an additional interfacial component exists. This 

is the interface between HNBR and MWCNTs. The addition of MWCNTs increases 

the conductivity of the system and at the same time the electrical heterogeneity of their 

constituents. Enhanced heterogeneity alters the intensity of the IP effect, which can be 

realized via the high values of real and imaginary part of dielectric permittivity. 

Recalling Equation (1), in the electric modulus presentation, the increase of intensity of 

IP is demonstrated by reduced values of M′ and M″. Thus, the lower values of loss 

modulus index (M) can be considered as a strong indication for the existence of 

intensive interfacial phenomena. The broadness of the peak can be assigned to 

interactions between the constituents of the nanocomposite. Interfaces with varying 

geometrical characteristics contribute to interfacial relaxation phenomena with 

different dynamics or relaxation times, the superposition of all interfacial effects results 

in the recorded broad peak. Furthermore, shifting of the loss peak position to higher 

temperature implies an increase of relaxation time and an increase of the activation 

energy of the process with the addition of 10 phr MWCNTs. An analogous behavior 

for IP has been reported in polyurethane rubber/layered silicates nanocomposites [6]. 

The spectrum of HNBR + 20phr MWCNTs composite deviates remarkably from the 

spectra of the other two systems. M attains very low values, and no relaxation process 

can be detected. This behavior is in accordance with the results of Figure 6, and the 

very high values of real and imaginary part of dielectric permittivity. This further 

suppression of M values is related to the accessional increase of conductivity. 

Increasing the conductive phase content in a binary system with insulating matrix, alters 

the overall conductivity of the composite and at a critical concentration, known as 

percolation threshold, a dramatic increase of conductivity occurs [21,28,29]. At 
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concentrations close to the critical one, charges are able to migrate at larger distances 

within the composite because of the formation of conductive paths. Charges 

accumulated at the system’s interfaces are now able to migrate contributing to the 

increase of conductivity and at the same diminish or even eliminate IP process [29]. On 

the other hand, the absence of even a small loss peak related to the glass to rubber 

transition is peculiar. It might be resulted from the reduction of the amorphous areas, 

which are now constrained between extensive rigid crystalline regions. Their relaxation 

is thus hindered, and the dynamics of the process is delayed. The broad peak in Figure 

6b is in good agreement with the previous assumption, and the DSC results which 

revealed an increasing trend of Tg with the crystallinity of the systems. The increase of 

Tg with MWCNT content should be attributed to the enhanced restrictions imposed to 

the macromolecules in the amorphous parts by the crystalline regions. 

On the contrary to Figure 7a, fast relaxation processes are depicted in Figure 7b, where 

the variation of the imaginary part of electric modulus versus temperature at    1 MHz 

is presented. β-relaxation is clearly detected via the loss peak in the vicinity of 0oC for 

both HNBR and HNBR + 10 phr MWCNT systems, while -mode is recorded as a 

hump at the left side of the peak in the temperature range from -100oC to -40oC. Both 

processes are present in the spectrum of the HNBR + 20 phr MWCNT nanocomposite. 

Their superposition forms a plateau at lower temperatures, which follows a step like 

transition to lower values of M at temperatures higher than 0oC. The relaxation 

mechanisms shown in Figure 7a (α-relaxation and IP), have been shifted to higher 

temperatures (out of the experimental “window”) because of the temperature – 

frequency superposition.  

Conductivity measurements for all three tested systems at various frequencies, as a 

function of reciprocal temperature are depicted in Figure 8. Conductivity rises with 
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conductive filler content, and especially for the HNBR + 20 phr MWCNT 

nanocomposite, this alteration ranges from 3 to 6 orders of magnitude at high and low 

temperature edges respectively. In the low temperature region (temperatures lower than 

-50oC), in all examined systems, conductivity tends to acquire constant values. 

Conductivity increases with the frequency of the applied field, and at high temperatures 

conductivity values are converging, especially in the case of HNBR (Figure 8a). The 

resulting form of the ac = f(1/T) curves, strongly deviates from a pure Arrhenius 

behavior, signifying that the occurring conductance mechanisms do not correspond to 

a single thermally activated process and cannot be described via a single exponential 

relationship. Thus, at temperatures higher than -50oC conductivity’s activation energy 

depends on frequency and temperature and it is reasonable to assume that a range of 

activation energies is involved. Furthermore, the spread of conductivity values with 

temperature increases as the frequency of the applied field diminishes. At low 

frequencies charge carriers are forced to drift over large distances addressing high 

energy barriers because of the insulating matrix. Increase of temperature facilitates this 

migration by offering additional thermal excitation. When frequency rises charge 

carriers’ mean displacement is significantly reduced. Charges are now addressing lower 

energy barriers and are able to jump between adjacent conductive sites, altering thus 

the overall measured conductivity. In the unreinforced HNBR conductivity values 

exhibit remarkable proximity, at high temperatures, being independent from the 

frequency of the applied field. The presence of MWCNTs in the nanocomposite 

systems increases the number of conductive sites and charge carriers density, and as a 

consequence conductivity increases, (Figure 8b,c). The influence of frequency seems 

to become stronger than that of temperature with increasing MWCNT content. The 

latter could be considered as an indirect indication for energy barriers reduction. In an 
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intermediate temperature range (between -30oC and 20oC), a peak is formed in all 

studied systems. This peak is related to the glass to rubber transition of the amorphous 

regions, and it corresponds to the systems’ Tg. Accordingly peak shifts to higher 

temperatures with increasing frequency. Glass transition temperatures as determined 

via DSC, or resulted from the loss peak position in the dielectric spectra, lie within the 

range mentioned previously.  

Relaxation dynamics or peak loss shift rate with temperature for the HNBR and HNBR 

+ 10phr MWCNT systems is presented in Figure 9. The temperature dependence of loss 

peak position for β- and -relaxations follows an Arrhenius type behavior and can be 

described via Equation (2): 
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where EA is the activation energy of the process, f0 pre-exponential factor, kB the 

Boltzmann constant and T the absolute temperature.  

On the other hand, peak shift rate for -relaxation is not constant and is described via 

the Vogel-Fulcher-Tamann (VFT) equation, which is expressed by Equation (3): 
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where f0 is a pre-exponential factor, A a constant being the measure of activation energy, 

T0 the Vogel temperature or ideal glass transition temperature, and T the absolute 

temperature. According to VFT equation, relaxation rate increases rapidly at lower 

temperatures because of the reduction of free volume. Calculated values of activation 
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energy via fitting experimental data for β- and -relaxations via Equation (2), as well 

as fitting parameters for -relaxation determined by employing Equation (3), are listed 

in Table 2. 

The absence of clearly formed peaks in the case of the HNBR + 20phr MWCNT 

nanocomposite prohibits the evaluation of the relaxation dynamics parameters in this 

system. Moreover, the limited number of peak points for the IP relaxation, located at 

the low frequency and high temperature edge, resulted in low reliability fittings, and 

thus are omitted from Figure 9a,b. Determined values of activation energy via Equation 

(2) of β- and -processes as well as fitting parameters of Equation (3) for -process are 

also listed in Table 2. Polar side groups’ rearrangement seems to be restricted from 

crystalline regions, since the activation energy of this process appears elevated (~2 eV) 

and tends to increase further with crystallinity level. On the other hand activation 

energy for -relaxation remains low and decreases with crystallinity.              

 

5. Conclusions 

Morphology, thermal response, dielectric properties and electrical conductivity of 

HNBR and MWCNT reinforced HNBR systems were studied. XRD spectra revealed 

the presence of crystalline regions in HNBR which further increases with the addition 

of MWCNTs. Glass to rubber transition, as determined via DSC, was found to lie in the 

range from -38 to -34 oC. Dielectric permittivity increases with diminishing frequency 

and increasing temperature. Loss spectra revealed the presence of four relaxation 

processes, which with descending relaxation time, were attributed to IP, glass to rubber 

transition of amorphous regions of HNBR (α-relaxation), local motions of polar side 

cyano groups (β-relaxation), and to “crankshaft” motions of the (CH2)n units of the 

HNBR’s backbone (γ- relaxation). IP relaxation process is attributed to the 
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accumulation of charges at the interface between amorphous and crystalline regions, as 

well as between HNBR and MWCNTs. Conductivity increases with MWCNT content, 

frequency and temperature. The influence of temperature is more pronounced in the 

case of the unfilled HNBR. Below -50oC conductivity values appear to be temperature 

independent for all studied systems. Finally, relaxation dynamics are affected by the 

systems’ level of crystallinity. 
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Figure captions 

Figure 1: SEM images from cryofractured surface of the HNBR + 20 phr MWCNT 

specimen at (a) 1000x, (b) 20000x, and (c) 25000x magnification.  



22 
 

Figure 2: XRD diffractograms of the (i) HNBR, (ii) HNBR + 10 phr MWCNT, and (iii) 

HNBR + 20 phr MWCNT systems. Arrow lines indicate peaks positions for a: graphite-

like peak, b,f,h,k: calcite , c,d,e,h,l: ZnO and g: MgO peak. 

Figure 3: DSC thermographs of all studied systems.  

Figure 4: Variation of (a) real part of permittivity and (b) loss tangent, with temperature 

and frequency for unfilled HNBR.  

Figure 5: Variation of (a) real part of permittivity and (b) loss tangent, with temperature 

and frequency for the HNBR+10phr MWCNT system.  

Figure 6: Variation of (a) real part of permittivity and (b) loss tangent, with temperature 

and frequency for the HNBR+20phr MWCNT system.  

Figure 7: Variation of modulus loss index with temperature for all studied systems at 

(a) 10 Hz, and (b) 1 MHz. 

Figure 8: Conductivity as a function of reciprocal temperature at various frequencies 

for (a) HNBR, (b) HNBR+10phr MWCNT, and (c) HNBR+20phr MWCNT systems. 

Figure 9: Loss peak position, of the recorded relaxations, as a function of reciprocal 

temperature for (a) HNBR, and (b) HNBR+10phr MWCNT systems. 
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Fig. 5 
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Fig. 6 
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