53 research outputs found

    Developing Model Benchtop Systems for Microbial Experimental Evolution

    Get PDF
    Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA-damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO and O. Additional environmental stressor systems like temperature (extreme heat or cold), metal toxicity, and other forms of radiation will increase the scale and testing range

    Open-label randomized trial of titrated disease management for patients with hypertension: Study design and baseline sample characteristics

    Get PDF
    Despite the availability of efficacious treatments, only half of patients with hypertension achieve adequate blood pressure (BP) control. This paper describes the protocol and baseline subject characteristics of a 2-arm, 18-month randomized clinical trial of titrated disease management (TDM) for patients with pharmaceutically-treated hypertension for whom systolic blood pressure (SBP) is not controlled (≥140mmHg for non-diabetic or ≥130mmHg for diabetic patients). The trial is being conducted among patients of four clinic locations associated with a Veterans Affairs Medical Center. An intervention arm has a TDM strategy in which patients' hypertension control at baseline, 6, and 12 months determines the resource intensity of disease management. Intensity levels include: a low-intensity strategy utilizing a licensed practical nurse to provide bi-monthly, non-tailored behavioral support calls to patients whose SBP comes under control; medium-intensity strategy utilizing a registered nurse to provide monthly tailored behavioral support telephone calls plus home BP monitoring; and high-intensity strategy utilizing a pharmacist to provide monthly tailored behavioral support telephone calls, home BP monitoring, and pharmacist-directed medication management. Control arm patients receive the low-intensity strategy regardless of BP control. The primary outcome is SBP. There are 385 randomized (192 intervention; 193 control) veterans that are predominately older (mean age 63.5 years) men (92.5%). 61.8% are African American, and the mean baseline SBP for all subjects is 143.6mmHg. This trial will determine if a disease management program that is titrated by matching the intensity of resources to patients' BP control leads to superior outcomes compared to a low-intensity management strategy

    Instrumentation for Examining Microbial Response to Changes In Environmental Pressures

    Get PDF
    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to selection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation.The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber.Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various different growth media to individual cultures and introduce chemical toxins during experimentation; AADEC can perform freeze and thaw cycles. We improved our baseline characterization by building a custom UV-C exposure hood, a shutter operates on a preset timer allowing the user to set exposure intensity consistently for multiple iterations

    Coastal California's Fog as a Unique Habitable Niche: Design for Autonomous Sampling and Preliminary Aerobiological Characterization

    Get PDF
    Just as on the land or in the ocean, atmospheric regions may be more or less hospitable to life. The aerobiosphere, or collection of living things in Earth's atmosphere, is poorly understood due to the small number and ad hoc nature of samples studied. However, we know viable airborne microbes play important roles, such as providing cloud condensation nuclei. Knowing the distribution of such microorganisms and how their activity can alter water, carbon, and other geochemical cycles is key to developing criteria for planetary habitability, particularly for potential habitats with wet atmospheres but little stable surface water. Coastal California has regular, dense fog known to play a major transport role in the local ecosystem. In addition to the significant local (1 km) geographical variation in typical fog, previous studies have found that changes in height above surface of as little as a few meters can yield significant differences in typical concentrations, populations and residence times. No single current sampling platform (ground-based impactors, towers, balloons, aircraft) is capable of accessing all of these regions of interest.A novel passive fog and cloud water sampler, consisting of a lightweight passive impactor suspended from autonomous aerial vehicles (UAVs), is being developed to allow 4D point sampling within a single fog bank, allowing closer study of small-scale (100 m) system dynamics. Fog and cloud droplet water samples from low-altitude aircraft flights in nearby coastal waters were collected and assayed to estimate the required sample volumes, flight times, and sensitivity thresholds of the system under design.125 cloud water samples were collected from 16 flights of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) instrumented Twin Otter, equipped with a sampling tube collector, occurring between 18 July and 12 August 2016 below 1 km altitude off the central coast. The collector was flushed first with 70 ethanol, then with sterile DI water, between sampling regions. Collected volumes ranged from 100 L to 12 mL. All samples were diluted serially and plated on two different types of agar, nutrient-dense (PCA) and sparse (R-2A). Plates were incubated at room temperature and counted when colonies first appeared and again at 2 weeks.Preliminary results from seven flights are consistent with generally reported colony-forming unit (CFU) values for terrestrial fog water (e.g., [4]). The PCA assay ranged from 400 to 125,000 CFU/mL, R-2A from 700 to 130,000 CFU/mL. PCA and R-2A counts were not significantly different from each other at I^ plus or minus +/- 0.05, although observationally, the R2A plates had more pigmented colonies. CFU counts from the majority of flights were not different from each other in mean at the same level of significance, but about half differed in median, indicating differences in underlying distribution. These results validate the presence of viable microorganisms in coastal California fog at levels that should be easily detectable by our sampling system. The indicated distribution differences underscore the need for small-scale, long-term sampling surveys. Future planned work includes ion chromatography for limiting nutrients, ATP quantification, and qPCR for several microbial classes of interest

    The Prevalence and Influence of the Combination of Humor and Violence in Super Bowl Commercials

    Get PDF
    The growing concern over violence in the media has led to vast amounts of research examining the effects of violent media on viewers. An important subset of this research looks at how humor affects this relationship. While research has considered this subset in television programming, almost no research has explored this in the context of advertising. This paper builds on the little research that exists by examining the effects of combining humor and violence, as well as the theoretical approaches that underlie these effects. A content analysis is conducted to identify the prevalence of violence, humor, and the combination of these elements in a longitudinal sample of Super Bowl commercials (2005, 2007, and 2009). Further, we investigate the relationship between the joint occurrence of humor and violence in ads and ad popularity. We conclude that violent acts are rampant in these commercials and that many acts are camouflaged by the simultaneous presence of humor, especially in the most popular ads

    Variation in LPA Is Associated with Lp(a) Levels in Three Populations from the Third National Health and Nutrition Examination Survey

    Get PDF
    The distribution of lipoprotein(a) [Lp(a)] levels can differ dramatically across diverse racial/ethnic populations. The extent to which genetic variation in LPA can explain these differences is not fully understood. To explore this, 19 LPA tagSNPs were genotyped in 7,159 participants from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a diverse population-based survey with DNA samples linked to hundreds of quantitative traits, including serum Lp(a). Tests of association between LPA variants and transformed Lp(a) levels were performed across the three different NHANES subpopulations (non-Hispanic whites, non-Hispanic blacks, and Mexican Americans). At a significance threshold of p<0.0001, 15 of the 19 SNPs tested were strongly associated with Lp(a) levels in at least one subpopulation, six in at least two subpopulations, and none in all three subpopulations. In non-Hispanic whites, three variants were associated with Lp(a) levels, including previously known rs6919246 (p = 1.18×10−30). Additionally, 12 and 6 variants had significant associations in non-Hispanic blacks and Mexican Americans, respectively. The additive effects of these associated alleles explained up to 11% of the variance observed for Lp(a) levels in the different racial/ethnic populations. The findings reported here replicate previous candidate gene and genome-wide association studies for Lp(a) levels in European-descent populations and extend these findings to other populations. While we demonstrate that LPA is an important contributor to Lp(a) levels regardless of race/ethnicity, the lack of generalization of associations across all subpopulations suggests that specific LPA variants may be contributing to the observed Lp(a) between-population variance

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
    corecore