220 research outputs found

    Exploring alternative purchasing strategies: just-in-time or just enough?

    Get PDF
    What are the prevalent purchasing strategies used by manufacturing firms to purchase components that are critical to the quality of their most important products? This research reports the findings from data on purchasing strategies collected from 248 companies. The data indicate that although firms seem to be moving away from a transaction-based purchasing strategy towards partnership relations necessary for successful just-in-time strategies, firms are likely to embrace one of four hybrid purchasing strategies that on a spectrum would fall somewhere between the two pure strategies. These identified strategies offer purchasing managers viable alternatives to moving directly into a just-in-time environment

    Web users with autism: eye tracking evidence for differences

    Get PDF
    Anecdotal evidence suggests that people with autism may have different processing strategies when accessing the web. However, limited empirical evidence is available to support this. This paper presents an eye tracking study with 18 participants with high-functioning autism and 18 neurotypical participants to investigate the similarities and differences between these two groups in terms of how they search for information within web pages. According to our analysis, people with autism are likely to be less successful in completing their searching tasks. They also have a tendency to look at more elements on web pages and make more transitions between the elements in comparison to neurotypical people. In addition, they tend to make shorter but more frequent fixations on elements which are not directly related to a given search task. Therefore, this paper presents the first empirical study to investigate how people with autism differ from neurotypical people when they search for information within web pages based on an in-depth statistical analysis of their gaze patterns

    Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial

    Get PDF
    Background Ovarian cancer has a poor prognosis, with just 40% of patients surviving 5 years. We designed this trial to establish the eff ect of early detection by screening on ovarian cancer mortality. Methods In this randomised controlled trial, we recruited postmenopausal women aged 50–74 years from 13 centres in National Health Service Trusts in England, Wales, and Northern Ireland. Exclusion criteria were previous bilateral oophorectomy or ovarian malignancy, increased risk of familial ovarian cancer, and active non-ovarian malignancy. The trial management system confirmed eligibility and randomly allocated participants in blocks of 32 using computergenerated random numbers to annual multimodal screening (MMS) with serum CA125 interpreted with use of the risk of ovarian cancer algorithm, annual transvaginal ultrasound screening (USS), or no screening, in a 1:1:2 ratio. The primary outcome was death due to ovarian cancer by Dec 31, 2014, comparing MMS and USS separately with no screening, ascertained by an outcomes committee masked to randomisation group. All analyses were by modified intention to screen, excluding the small number of women we discovered after randomisation to have a bilateral oophorectomy, have ovarian cancer, or had exited the registry before recruitment. Investigators and participants were aware of screening type. This trial is registered with ClinicalTrials.gov, number NCT00058032. Findings Between June 1, 2001, and Oct 21, 2005, we randomly allocated 202 638 women: 50 640 (25·0%) to MMS, 50 639 (25·0%) to USS, and 101 359 (50·0%) to no screening. 202 546 (>99·9%) women were eligible for analysis: 50 624 (>99·9%) women in the MMS group, 50 623 (>99·9%) in the USS group, and 101 299 (>99·9%) in the no screening group. Screening ended on Dec 31, 2011, and included 345 570 MMS and 327 775 USS annual screening episodes. At a median follow-up of 11·1 years (IQR 10·0–12·0), we diagnosed ovarian cancer in 1282 (0·6%) women: 338 (0·7%) in the MMS group, 314 (0·6%) in the USS group, and 630 (0·6%) in the no screening group. Of these women, 148 (0·29%) women in the MMS group, 154 (0·30%) in the USS group, and 347 (0·34%) in the no screening group had died of ovarian cancer. The primary analysis using a Cox proportional hazards model gave a mortality reduction over years 0–14 of 15% (95% CI –3 to 30; p=0·10) with MMS and 11% (–7 to 27; p=0·21) with USS. The Royston-Parmar fl exible parametric model showed that in the MMS group, this mortality eff ect was made up of 8% (–20 to 31) in years 0–7 and 23% (1–46) in years 7–14, and in the USS group, of 2% (–27 to 26) in years 0–7 and 21% (–2 to 42) in years 7–14. A prespecified analysis of death from ovarian cancer of MMS versus no screening with exclusion of prevalent cases showed significantly diff erent death rates (p=0·021), with an overall average mortality reduction of 20% (–2 to 40) and a reduction of 8% (–27 to 43) in years 0–7 and 28% (–3 to 49) in years 7–14 in favour of MMS. Interpretation Although the mortality reduction was not signifi cant in the primary analysis, we noted a signifi cant mortality reduction with MMS when prevalent cases were excluded. We noted encouraging evidence of a mortality reduction in years 7–14, but further follow-up is needed before firm conclusions can be reached on the efficacy and cost-eff ectiveness of ovarian cancer screening

    Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene.

    Get PDF
    We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8×10-3). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2, where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P=0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P=0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P=0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality

    Long-Term Secondary Care Costs of Endometrial Cancer: A Prospective Cohort Study Nested within the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).

    Get PDF
    BACKGROUND: There is limited evidence on the costs of Endometrial Cancer (EC) by stage of disease. We estimated the long-term secondary care costs of EC according to stage at diagnosis in an English population-based cohort. METHODS: Women participating in UKCTOCS and diagnosed with EC following enrolment (2001-2005) and prior to 31st Dec 2009 were identified to have EC through multiple sources. Survival was calculated through data linkage to death registry. Costs estimates were derived from hospital records accessed from Hospital Episode Statistics (HES) with additional patient level covariates derived from case notes and patient questionnaires. Missing and censored data was imputed using Multiple Imputation. Regression analysis of cost and survival was undertaken. RESULTS: 491 of 641 women with EC were included. Five year total costs were strongly dependent on stage, ranging from £9,475 (diagnosis at stage IA/IB) to £26,080 (diagnosis at stage III). Stage, grade and BMI were the strongest predictors of costs. The majority of costs for stage I/II EC were incurred in the first six months after diagnosis while for stage III / IV considerable costs accrued after the first six months. CONCLUSIONS: In addition to survival advantages, there are significant cost savings if patients with EC are detected earlier.The analysis underpinning this study was supported with a grant from Cancer Research UK (CRUK Grant No: A16008) awarded to RL (http://www.cancerresearchuk. org/funding-for-researchers). The trial (UKCTOCS) for which the patients in this study form a subgroup was funded by the Medical Research Council, Cancer Research UK, the Department of Health and the Eve Appeal

    Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility “Hot-Spot”

    Get PDF
    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n = 675) and controls (n = 1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs—PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616—were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n = 1,233 serous invasive cases; n = 3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele≥0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele = 0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04–1.24) p = 0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Get PDF
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The Nurses’ Health Studies would like to thank the participants and staff of the Nurses' Health Study and Nurses' Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Funding of the constituent studies was provided by the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes of Health Research (MOP-86727); Cancer Australia; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124); the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki University Central Hospital Research Fund; Helse Vest; the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education (4 PO5C 028 14, 2 PO5A 068 27); the Roswell Park Cancer Institute Alliance Foundation; the US National Cancer Institute (K07-CA095666, K07-CA80668, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC67001, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P30-CA072720, P30-CA15083, P30-CA008748, P50-CA159981, P50-CA105009, P50-CA136393, R01-CA149429, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063678, R01-CA063682, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-CA095023, R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R03-CA113148, R03-CA115195, U01-CA069417, U01-CA071966, UM1-CA186107, UM1-CA176726 and Intramural research funds); the NIH/National Center for Research Resources/General Clinical Research Center (MO1-RR000056); the US Army Medical Research and Material Command (DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-07-0449, W81XWH-10-1-02802); the US Public Health Service (PSA-042205); the National Health and Medical Research Council of Australia (199600 and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01GB 9401); the State of Baden-Wurttemberg through Medical Faculty of the University of Ulm (P.685); the German Cancer Research Center; the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Oak Foundation; Eve Appeal; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital ‘Womens Health Theme’ and the Royal Marsden Hospital; and WorkSafeBC 14. Investigator-specific funding: G.C.P receives scholarship support from the University of Queensland and QIMR Berghofer. Y.L. was supported by the NHMRC Early Career Fellowship. G.C.T. is supported by the National Health and Medical Research Council. S.M. was supported by an ARC Future Fellowship

    CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study

    Get PDF
    BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC
    corecore