327 research outputs found

    In-Peptide Synthesis of Imidazolidin-2-one Scaffolds, Equippable with Proteinogenic or Taggable/Linkable Side Chains, General Promoters of Unusual Secondary Structures

    Get PDF
    Peptidomimetics containing (S)- or (R)-imidazolidin-2-one-4- carboxylate (Imi) have been obtained by the expedient in-peptide cyclization of (S)- or (R)-\u3b1,\u3b2-diaminopropionic acid (Dap) residues. These Imi scaffolds behave as proline analogues characterized by a flat structure and a transrestricted geometry of the preceding peptide bond and induce well-defined secondary structures in a biomimetic environment. While (S)-Imi peptides adopted a \u3b3\u2032-turn conformation, (R)-Imi induced the contemporary formation of a \u3b3-turn and a rare 11-membered H-bonded structure in the 2\u21924 opposite direction of the sequence, identified as a \u3b5-turn. In order to exploit these Imi scaffolds as general promoters of unusual secondary structures, proteinaceous side chains have been introduced at the N1 position of the five-membered ring, potentially mimicking any residues. Finally, the Imi rings have been equipped with unnatural side chains or with functionalized substituents, which can be utilized as linkers to chemoselectively bind the Imi-peptides onto nanoparticles, biomaterials, or diagnostic probes

    Integrin-Targeting Dye-Doped PEG-Shell/Silica-Core Nanoparticles Mimicking the Proapoptotic Smac/DIABLO Protein

    Get PDF
    Cancer cells demonstrate elevated expression levels of the inhibitor of apoptosis proteins (IAPs), contributing to tumor cell survival, disease progression, chemo-resistance, and poor prognosis. Smac/DIABLO is a mitochondrial protein that promotes apoptosis by neutralizing members of the IAP family. Herein, we describe the preparation and in vitro validation of a synthetic mimic of Smac/DIABLO, based on fluorescent polyethylene glycol (PEG)-coated silica-core nanoparticles (NPs) carrying a Smac/DIABLO-derived pro-apoptotic peptide and a tumor-homing integrin peptide ligand. At low \u3bcM concentration, the NPs showed significant toxicity towards A549, U373, and HeLa cancer cells and modest toxicity towards other integrin-expressing cells, correlated with integrin-mediated cell uptake and consequent highly increased levels of apoptotic activity, without perturbing cells not expressing the \u3b15 integrin subunit

    Ring size in cyclic endomorphin-2 analogs modulates receptor binding affinity and selectivity

    Get PDF
    The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied

    Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores

    Get PDF
    Background & Aims: Hepatocellular carcinoma (HCC) risk stratification in individuals with dysmetabolism is a major unmet need. Genetic predisposition contributes to non-alcoholic fatty liver disease (NAFLD). We aimed to exploit robust polygenic risk scores (PRS) that can be evaluated in the clinic to gain insight into the causal relationship between NAFLD and HCC, and to improve HCC risk stratification. Methods: We examined at-risk individuals (NAFLD cohort, n = 2,566; 226 with HCC; and a replication cohort of 427 German patients with NAFLD) and the general population (UK Biobank [UKBB] cohort, n = 364,048; 202 with HCC). Variants in PNPLA3-TM6SF2-GCKR-MBOAT7 were combined in a hepatic fat PRS (PRS-HFC), and then adjusted for HSD17B13 (PRS-5). Results: In the NAFLD cohort, the adjusted impact of genetic risk variants on HCC was proportional to the predisposition to fatty liver (p = 0.002) with some heterogeneity in the effect. PRS predicted HCC more robustly than single variants (p <10-13). The association between PRS and HCC was mainly mediated through severe fibrosis, but was independent of fibrosis in clinically relevant subgroups, and was also observed in those without severe fibrosis (p <0.05). In the UKBB cohort, PRS predicted HCC independently of classical risk factors and cirrhosis (p <10-7). In the NAFLD cohort, we identified high PRS cut-offs (≥0.532/0.495 for PRS-HFC/PRS-5) that in the UKBB cohort detected HCC with ~90% specificity but limited sensitivity; PRS predicted HCC both in individuals with (p <10-5) and without cirrhosis (p <0.05). Conclusions: Our results are consistent with a causal relationship between hepatic fat and HCC. PRS improved the accuracy of HCC detection and may help stratify HCC risk in individuals with dysmetabolism, including those without severe liver fibrosis. Further studies are needed to validate our findings. Lay summary: By analyzing variations in genes that contribute to fatty liver disease, we developed two risk scores to help predict liver cancer in individuals with obesity-related metabolic complications. These risk scores can be easily tested in the clinic. We showed that the risk scores helped to identify the risk of liver cancer both in high-risk individuals and in the general population

    Rare ATG7 genetic variants predispose patients to severe fatty liver disease

    Get PDF
    Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants. Methods: We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n = 301) and examined the enrichment of likely pathogenic rare variants vs. the general population. This was followed by validation at the gene level. Results: In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; OR 5.26, 95% CI 2.1-12.6; p = 0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9; 95% CI 1.9-612; p = 0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30; 95% CI 1.1-7.5 and OR 12.30, 95% CI 2.6-36, respectively; p <0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR 1.7; 95% CI 1.2-2.5; p = 0.003), predisposed to hepatocellular ballooning (p = 0.007) evolving to fibrosis in a Liver biopsy cohort (n = 2,268), and was associated with liver injury in the UK Biobank (aspartate aminotransferase levels, p <0.001), with a larger effect in severely obese individuals in whom it was linked to hepatocellular carcinoma (p = 0.009). ATG7 protein localized to periportal hepatocytes, particularly in the presence of ballooning. In the Liver Transcriptomic cohort (n = 125), ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers. Conclusions: We identified rare and low-frequency ATG7 loss-of-function variants that promote NAFLD progression by impairing autophagy and facilitating ballooning and inflammation. Lay summary: We found that rare mutations in a gene called autophagy-related 7 (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation

    Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter

    Get PDF
    We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496–3501, 2006; De Grave et al. in Exp Br Res 193:421–427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information

    Strategies to inhibit tumour associated integrin receptors: rationale for dual and multi-antagonists

    Get PDF
    YesThe integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions; thrombosis, angiogenesis and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress towards development of antagonists targeting two or more members of the RGD-binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics

    When Ears Drive Hands: The Influence of Contact Sound on Reaching to Grasp

    Get PDF
    Background Most research on the roles of auditory information and its interaction with vision has focused on perceptual performance. Little is known on the effects of sound cues on visually-guided hand movements. Methodology/Principal Findings We recorded the sound produced by the fingers upon contact as participants grasped stimulus objects which were covered with different materials. Then, in a further session the pre-recorded contact sounds were delivered to participants via headphones before or following the initiation of reach-to-grasp movements towards the stimulus objects. Reach-to-grasp movement kinematics were measured under the following conditions: (i) congruent, in which the presented contact sound and the contact sound elicited by the to-be-grasped stimulus corresponded; (ii) incongruent, in which the presented contact sound was different to that generated by the stimulus upon contact; (iii) control, in which a synthetic sound, not associated with a real event, was presented. Facilitation effects were found for congruent trials; interference effects were found for incongruent trials. In a second experiment, the upper and the lower parts of the stimulus were covered with different materials. The presented sound was always congruent with the material covering either the upper or the lower half of the stimulus. Participants consistently placed their fingers on the half of the stimulus that corresponded to the presented contact sound. Conclusions/Significance Altogether these findings offer a substantial contribution to the current debate about the type of object representations elicited by auditory stimuli and on the multisensory nature of the sensorimotor transformations underlying action

    Adjustable Ellipsoid Nanoparticles Assembled from Re-engineered Connectors of the Bacteriophage Phi29 DNA Packaging Motor

    Get PDF
    A 24 x 30 nm ellipsoid nanoparticle containing 84 subunits or 7 dodecamers of the re-engineered core protein of the bacteriophage phi29 DNA packaging motor was constructed. Homogeneous nanoparticles were obtained with simple one-step purification. Electron microscopy and analytical ultracentrifugation were employed to elucidate the structure, shape, size, and mechanism of assembly. The formation of this structure was mediated and stabilized by N-terminal peptide extensions. Reversal of the 84-subunit ellipsoid nanoparticle to its dodecamer subunit was controlled by the cleavage of the extended N-terminal peptide with a protease. The 84 outward-oriented C-termini were conjugated with a streptavidin binding peptide which can be used for the incorporation of markers. This further extends the application of this nanoparticle to pathogen detection and disease diagnosis by signal enhancement

    When Right Feels Left: Referral of Touch and Ownership between the Hands

    Get PDF
    Feeling touch on a body part is paradigmatically considered to require stimulation of tactile afferents from the body part in question, at least in healthy non-synaesthetic individuals. In contrast to this view, we report a perceptual illusion where people experience “phantom touches” on a right rubber hand when they see it brushed simultaneously with brushes applied to their left hand. Such illusory duplication and transfer of touch from the left to the right hand was only elicited when a homologous (i.e., left and right) pair of hands was brushed in synchrony for an extended period of time. This stimulation caused the majority of our participants to perceive the right rubber hand as their own and to sense two distinct touches – one located on the right rubber hand and the other on their left (stimulated) hand. This effect was supported by quantitative subjective reports in the form of questionnaires, behavioral data from a task in which participants pointed to the felt location of their right hand, and physiological evidence obtained by skin conductance responses when threatening the model hand. Our findings suggest that visual information augments subthreshold somatosensory responses in the ipsilateral hemisphere, thus producing a tactile experience from the non-stimulated body part. This finding is important because it reveals a new bilateral multisensory mechanism for tactile perception and limb ownership
    corecore