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Abstract: Cancer cells demonstrate elevated expression levels of the inhibitor of apoptosis proteins
(IAPs), contributing to tumor cell survival, disease progression, chemo-resistance, and poor prognosis.
Smac/DIABLO is a mitochondrial protein that promotes apoptosis by neutralizing members of the
IAP family. Herein, we describe the preparation and in vitro validation of a synthetic mimic of
Smac/DIABLO, based on fluorescent polyethylene glycol (PEG)-coated silica-core nanoparticles (NPs)
carrying a Smac/DIABLO-derived pro-apoptotic peptide and a tumor-homing integrin peptide ligand.
At low µM concentration, the NPs showed significant toxicity towards A549, U373, and HeLa cancer
cells and modest toxicity towards other integrin-expressing cells, correlated with integrin-mediated
cell uptake and consequent highly increased levels of apoptotic activity, without perturbing cells not
expressing the α5 integrin subunit.

Keywords: Smac/DIABLO; cancer; RGD; AVPI; IAP; confocal microscopy; silica nanoparticles; cellular
uptake; drug delivery

1. Introduction

Apoptosis, or programmed cell death, is an essential process in the homeostasis of multicellular
organisms. Apoptosis initiates through either the extrinsic death receptor pathway or the intrinsic
mitochondrial signaling pathway, which both culminate with the activation of Cysteine ASPartic
acid-specific proteASES (CASPASES), enzymes that degrade specific substrates implied in fundamental
cellular processes. In mammals, caspase-3, -7 and -9 activity is regulated by the inhibitor of apoptosis
proteins (IAPs) [1,2]. The mammalian IAP family includes eight members, all of which share
the family-defining baculovirus IAP repeat (BIR) domain at the N-terminal end of the protein [3].
BIRs are protein-interacting modules with distinct binding properties, necessary for the anti-apoptotic
activity [4–6].

A strict regulation of apoptosis is involved in many human diseases [7]. Tumorigenic cells
exhibit significantly elevated expression levels of IAPs, resulting in the elusion of apoptosis, one of
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the defining hallmarks of cancer and an underlying cause of therapeutic resistance [8]. IAP-mediated
caspase inhibition is depressed by the second mitochondria-derived activator (Smac)/direct inhibitor
of apoptosis-binding protein with low pI (DIABLO), a mitochondrial protein that is translocated to
the cytoplasm in apoptotic conditions [9]. Structural analysis proved that the N-terminal sequence
of Smac/DIABLO is essential for its function in the interaction with the BIR domain of IAP [10].
As a consequence, peptides derived from the N-terminal sequence of Smac/DIABLO may represent
attractive anticancer molecules.

In general, native peptides show too scarce stability and bioavailability to consent therapeutic or
diagnostic applications [11,12]. To increase cellular uptake, the native seven-residue N-terminus of
Smac/DIABLO (SmacN7) was bonded to a cell membrane-permeable octaArg peptide (R8). The resulting
SmacN7-R8 was able to induce the apoptosis of human non-small lung cancer (NSCLC) cells H460 [13].
More recently, peptidomimetics [12] of the N-terminus of Smac/DIABLO with potentially higher stability
and bioavailability, including retro-inverso [14], C-naphthyl substituted [15], and aza-peptides [16]
have been designed and tested.

Nanoparticles (NPs) provide extraordinary opportunities as drug nanocarriers [17–19], due to
their prolonged circulation time and both passive and active targeting abilities towards cancerous
tissues/cells. The conjugation of peptides to NPs represents an effective approach to addressing
the intrinsic drawbacks of the peptides, allowing the access to a variety of biomedical uses [20,21].
Specifically, this conjugation increases the circulating half-lives of the peptides in vivo, reducing
the need for frequent administrations to sustain their efficacy [22]. As concerns the transport of
Smac/DIABLO, Seneci et al. reported non-covalent and covalent superparamagnetic iron oxide
NPs (SPIONs)–Smac/DIABLO mimetic nanoconjugates. Unfortunately, the nanoconjugates were
almost inactive in assays against breast cancer MDA-MB-231 cells, ovarian carcinoma IGROV-1 cells,
and cervical cancer HeLa cells [23]. Li et al. prepared a SmacN7-conjugated polymer containing
the cell-penetrating R8 peptide and four hydrophobic tails. The Smac-conjugated polymer could
self-assemble, giving NPs in the aqueous environment. At high concentrations (>10 µM), Smac–NPs
elicited a measurable effect in MDA-MB-231 and H460 cells. The same NPs have been also used as
a drug delivery system for doxorubicin (DOX) in combination therapy; DOX-loaded NPs exhibited
higher cellular uptake and antitumor effect [24].

Finally, the tumor-targeting precision of drugs [25,26], NPs [27,28], polymers [29], biomaterials [30],
or nanostructured materials [20,31,32] can be strongly improved by conjugation with peptide ligands
addressing integrin receptors overexpressed by cancer cells [20,33,34]. The integrin family of cell
adhesion receptors regulates a diverse array of cellular functions crucial to the initiation, progression,
and metastatization of solid tumors, making them an appealing target for cancer therapy [35]. For this
reason, Gennari et al. connected a cyclo Arg–Gly–Asp (cRGD) ligand of the integrins αvβ3 and αvβ5 to
mimetics of Smac/DIABLO. In vitro, the conjugates showed moderate synergistic/enhanced cytotoxic
effects towards IGROV-1 cells [36].

In this context, we designed nanosystems mimicking the Smac/DIABLO protein, based
on inorganic fluorescent NPs coated with a biocompatible organic shell, functionalized with a
Smac/DIABLO-derived peptide and/or a tumor-homing RGD integrin ligand peptide. We opted for
micellar NPs composed of the tri-block surfactant copolymer Pluronic® F127 (PF127) (polyethylene
glycol-polypropyleneoxide-polyethylene glycol, PEG100–PPO65–PEG100) and a dye-doped silica core.
The PEG–PPO–PEG block copolymers alone can form micelles in aqueous media with a hydrophilic
core, which can be used to non-covalently encapsulate hydrophobic dyes with minimal leakage [37,38].
Micelles are valuable systems for application in the field of imaging and drug delivery, since they are
self-organized systems, and the encapsulation of dyes and drugs in these systems is straightforward
from the preparation point of view. However, they are dynamic systems, and their stability is strongly
influenced by their local concentration, pH, and eventually by the presence of other species like apolar
molecules or proteins [21,38].
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On the other hand, silica NPs as tools to develop targeting probes have several advantages
over other nanomaterial and self-organized systems [39]. Indeed, silica is photophysically inert, is
an intrinsically non-toxic material, and there are many synthetic approaches available to tune these
nanosystems in terms of size and functionalization. The luminescence emission of these systems
depends on the doping dye, so that a large variety of emission properties can be achieved by just
choosing the right doping dye(s). The inclusion of dye molecules in a rigid matrix like silica often
increases the quantum yield of the dyes and also their photostability, because of the rigidification of
dye structure and the protection towards quenching molecules present in the environment [39]. These
last two features are of prominent importance to univocally assign the recorded fluorescent signal to
the presence of the NPs and to control the local concentration of the cytotoxic compound during the
recognition event toward the targeted receptor.

For the purpose of peptide conjugation, NPs were prepared from a mixture of PF127 and its diazide
derivative PF127-(N3)2. After synthesis of the NPs and characterization, the azide terminations of the
outer shell were exploited to covalently bind a Smac/DIABLO-derived peptide and/or a tumor-homing
integrin ligand peptide. Then, the cytotoxicity, pro-apoptotic efficacy, and cellular uptake were
determined for these peptide–NPs in diverse cells. Particularly, the role of integrin-mediated cell
uptake was investigated by confocal microscopy.

2. Materials and Methods

2.1. Chemistry

2.1.1. General Methods

Standard chemicals, including protected amino acids, were purchased from commercial sources
and used without further purification. Peptide purity was assessed by analytical RP HPLC performed
on an 1100 series apparatus Agilent Technologies, Milan, Italy, using an XSelect Peptide CSH C18
column (Waters, Milford, MA, USA), 4.6 mm × 100 mm, 130 Å, 3.5 µm. MS (ESI) analysis was
performed using an MS single quadrupole HP 1100 MSD detector (Agilent Technologies, Milan,
Italy). The synthetic procedures by MW irradiation were performed with a Microwave Labstation for
Synthesis (Micro-SYNTH, Bergamo, BG, IT) equipped with a built-in ATC-FO advanced fiber-optic
automatic temperature control. Peptides isolation was performed by preparative RP HPLC performed
on an 1100 series apparatus (Agilent), using an XSelect Peptide CSH C18 OBD column (Waters) 19 mm
× 150 mm, 130 Å, 5 µm. The molecular weights of the purified peptides were verified by electrospray
ionization (ESI)–mass spectrometry (MS) using an MS single quadrupole HP 1100 MSD detector
(Agilent). Fluorescence measurements were performed with an LS-55 Fluorescence Spectrometer
(Perkin Elmer, Milan, Italy). DLS measurements were performed with a Zetasizer Nano ZS (Malvern
Panalytical, Malvern, UK). For full details, please see the Supporting Information.

2.1.2. c[Arg–Gly–Asp–D-Phe–Lys(hex–5–ynamide)] (cRGD–alkyne)

The linear precursor was obtained as reported in the literature [40]. In brief, H–Asp(OtBu)–
D-Phe–Lys(Cbz)–Arg(Mtr)–Gly–OH was prepared by solid-phase peptide synthesis (SPPS)
on a 2-chlorotritil chloride resin, by coupling fluorenmethyloxycarbonyl (Fmoc)-protected
amino acids with 1-hydroxybenzotriazole/N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium
hexafluorophosphate/N,N-diisopropylethylamine (HOBt/HBTU/DIPEA) under microwave (MW)
irradiation according to a recently optimized procedure [41]. Fmoc was removed with piperidine/

dimethylformamide (DMF) under MW irradiation. After cleavage from the resin with AcOH/2,2,2-
trifluoroethanol/dichloromethane (DCM), the crude peptide was submitted to cyclization in the
presence of diphenyl phosphoryl azide/NaHCO3 in DMF under pseudo high-dilution conditions [42].
The carbobenzyloxy (Cbz)-protecting group at Lys was removed by catalytic hydrogenation,
then the εNH2 amine was derivatized with 5-hexynoic acid in DMF/DCM with HOBt/TBTU/DIPEA
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under MW, giving c[Arg(Mtr)–Gly-Asp(OtBu)–D-Phe–Lys(hex-5-ynamide)]. Finally, the 4-methoxy-
2,3,6-trimethylbenzenesulphonyl (Mtr) and tert-butyl (tBu) side-chain-protecting groups were
removed with trifluoroacetic acid (TFA) and a cocktail of scavengers. Full details are given in
the Supporting Information.

2.1.3. H–Ala–Val–Pro–Ile–Gly–pent-4-yn-1-amine (AVPI–alkyne)

The precursor Boc–Ala–Val–Pro–Ile–Gly–OH was prepared by SPPS and cleavage using the
same protocol as described above; all details are given in the Supporting Information. Briefly,
the crude peptide was coupled to 4-pentyn-1-amine with HOBt/TBTU/DIPEA in DMF/DCM, under
MW irradiation, and the tert-butyloxycarbonyl (Boc) was removed with TFA.

2.1.4. PEG-Shell/Silica-Core Azide–NPs (NP–N3)

The dimesylate derivative of BASF Pluronic®F127 (PF127), obtained in turn by the treatment of
PF127 surfactant with trimethylamine/methanesulfonyl chloride, was reacted with NaN3. The resulting
PF127–(N3)2 (20 mg) was mixed with PF127 (200 mg) and RhB-TES (4.0 mg) in DCM, followed by
tetraethyl orthosilicate (TEOS, 350 µL) and trimethylchlorosilane (40 µL) in the presence of AcOH/NaCl.
The obtained NPs were purified by dialysis and diluted with water to the final concentration of
29 µM [43]. For full details, please see the Supporting Information.

2.1.5. NP–N3 Functionalization with cRGD–alkyne and/or AVPI–alkyne

The NP–N3 (500 µL, 30 µM) were dispersed in 1 mL of water and Tris-buffer pH 8 (1.5 mL, 200 mM)
and treated with CuSO4 (6 µL, 2 mM), sodium 4,4′-(1,10-phenanthroline-4,7-diyl)dibenzenesulfonate
(12 µL, 2 mM), peptide–alkyne (40 equiv. respect to NPs), and polished copper wire. After 3 days at rt,
the NPs were purified by size-exclusion chromatography on Sephadex® G-25 gel using bidistilled
water and finally diluted to the final NP concentration of 3 µM [43]. The full description is given in the
Supporting Information.

2.2. Biological Methods

2.2.1. Cells and Culture Conditions

Human umbilical vein endothelial cells (Huvec), adenocarcinoma human alveolar basal epithelial
cells (A549), human glioblastoma (U373), and human fibroblasts were obtained from Thermofisher
Scientific, Waltham, MA, USA. The human cervical carcinoma (HeLa) cells and human colon cancer
(HT29) cells were obtained from ATCC. DMEM, trypsin, PBS, Gly, and BSA 1% were purchased from
Merck Co Ltd., Serono, Italy. Mouse anti-α-tubulin primary antibody was purchased from BioLegend,
San Diego, CA. Anti-mouse fluorescein isothiocyanate (FITC)-conjugated secondary antibody and
Hoechst33342 were purchased from ThermoFisher. The MTS assay CellTiter 96® AQueous One
Solution Cell Proliferation Assay and Caspase-Glo® 9 assay were purchased from Promega, Italy.
A Synergy HT microplate reader Biotek, Milan, Italy, was used.

The cells were grown in RPMI 1640 medium (Labtek Eurobio, Milan, Italy), supplemented with
10% FCS (Euroclone, Milan, Italy) and 2 mM L-glutamine (Sigma-Aldrich, Milan, Italy), at 37 ◦C
and in a 5% CO2 atmosphere. The cells were seeded at 20 × 104 cells/cm2 in plastic wells (Orange
Scientific, Brainel’Alleud, Belgium). The cells were detached by a trypsin–EDTA solution (0.115 w/v %
trypsin and 0.02 w/v % EDTA) (Sigma-Aldrich, Milan, Italy) and then rinsed and re-suspended in the
corresponding medium.

2.2.2. Cell Viability Assays

The cytotoxicity of peptide–NPs was evaluated using the cell viability 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, according to the
manufacturer’s instructions. Cells were seeded (1.5 × 104 cells/well) and cultured for 48 h. The primary
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growth medium was replaced by fresh medium, containing NPs at the concentrations of 0.1, 1.0, 3.0 µM.
After 48 h, PBS (100 µL) was supplemented with the MTS solution (20 µL/well), incubated for 2 h,
and then the absorbance was recorded at 570 nm with a 96-well plate reader. Data were analyzed by
Prism software (GraphPad) and expressed as % of controls (untreated cells).

2.2.3. Apoptosis

We incubated 1.0 × 104 cells/well with the peptides–NPs at the concentration of 1 µM for 6 h.
The apoptotic process onset was evaluated by the Caspase-Glo® 9 assay (Promega), according to
the manufacturer’s instructions. After 30 min, the luminescence was measured using a Synergy HT
microplate reader (Biotek).

2.2.4. Cell Internalization

HT29 and HeLa cells were grown on sterile glass coverslips for 48 h and then treated with 1 µM
peptide–NPs for 1 h. The cells were washed (3×) with PBS and fixed in 500 µL of 3% paraformaldehyde.
The glass slides were washed twice with 1 mL of PBS–Gly 0.1 M and washed twice again with 1 mL
of PBS–BSA 1%. The samples were first incubated with mouse anti-α-tubulin primary antibody for
1 h in agitation at rt. The samples were washed again twice with 1 mL of PBS–BSA 1% and then
incubated with anti-mouse FITC-conjugated secondary antibody for 1 h at rt. Finally, the specimens
were embedded in Mowiol and analyzed by confocal microscopy. Confocal images were obtained with
a C1s confocal laser-scanning microscope equipped with a PlanApo, 60X or 40X, oil immersion lens
(Nikon, Tokyo, Japan). The visualization and quantification of cells that internalized the rhodamine B
(RhB)–NPs were performed using ImageJ (NIH, Bethesda, MD, USA).

2.2.5. Competition Experiments

HeLa cells were seeded on sterile glass coverslips for 48 h. Then, the cells were first pre-exposed
to IgG isotype or anti-CD49e antibody for 1 h and then incubated with 1 µM peptide–NP for 1 h.
The cells were stained with Hoechst33342, and the specimens were analyzed by confocal microscopy
as described above. The number of cells, counterstained with Hoechst 33342, showing intracellular red
fluorescence was expressed as % of the total cells.

3. Results

3.1. Chemistry

Monodispersed fluorescent silica-core/PEG-shell NPs functionalized with azide moieties and
incorporating the dye rhodamine B triethoxysilane (RhB-TES) [44] (Figure 1A) were expediently
obtained using a direct micelle-assisted method [45]. These nanostructures were formed by the
condensation of the silica precursor TEOS in an aqueous acid environment in the presence of
co-aggregates composed by a 10:1 mixture of the tri-block surfactant copolymer PF127 and its diazide
derivative PF127–(N3)2 [43]. The condensation of RhB-TES within the silica core of the NP conferred
the desired fluorescent properties to this nanosystem, preventing also the leaking of the fluorophore
in the external environment. Transmission electron microscopy (TEM) images showed a silica core
diameter dc = (10 ± 2) nm, while the hydrodynamic diameter measured by dynamic light scattering
(DLS) was dH = 22 ± 1 nm (PDI = 0.10) (Figure 1B–D), confirming the core/shell type architecture of
the resulting NPs–N3.

The NPs–N3 were derivatized by copper (I)-catalyzed azide–alkyne cycloaddition (CuAAC)
with the peptide–alkyne AVPI-alkyne, containing the pro-apoptotic Smac/DIABLO-derived sequence
AVPI [10], the integrin-targeting cyclopeptide–alkyne cRGD-alkyne [46], or a 1:1 mixture of both.
These reactions gave AVPI–NPs, cRGD–NPs, and AVPI/cRGD–NPs, respectively. DLS indicated the
effectiveness of the conjugation reaction, since the volume distribution after the conjugation reaction
increased to 28 nm, compared to that of the pristine NP–N3 (Figures S1–S3 and Table S1).
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Figure 1. (A) Molecular components involved in the synthesis of nanoparticles (NPs)–N3 and
functionalization scheme with the peptides H–Ala–Val–Pro–Ile (AVPI)–alkyne and/or cyclo Arg–Gly–
Asp (cRGD)–alkyne for the preparation of AVPI–NPs, cRGD–NPs, and AVPI/cRGD–NPs. Morphological
characterization of NPs–N3: (B) TEM images of NP–N3 (scale bar = 100 nm) and (C) TEM distribution
of the diameters (nm). (D) Hydrodynamic diameters distribution by volume of NP–N3 determined by
DLS (water, 25 ◦C). PEG, polyethylene glycol, PPO, polypropyleneoxide, RhB, rhodamine B, TEOS,
tetraethyl orthosilicate, TMSCl, trimethylchlorosilane.

By adapting reported procedures [47], the number of NP-bonded AVPI molecules was estimated by
fluorimetric quantitation with fluorescamine (an amine-reactive fluorogenic tracer), against a standard
calibration curve obtained with PEG–amine/fluorescamine (λex 390 nm, λem 480 nm). An aliquot of
the AVPI–NP suspension (25 µL, 29 mM) was treated with fluorescamine, and the relative fluorescence
intensity measured allowed to estimate 7.8 ± 1 peptides/NP. Alternatively, NPs functionalization
was appraised by the fluorimetric quantitation of the dansyl group after CuAAC reaction with
dansyl–AVPI–alkyne (Supporting Information), against a calibration curve obtained with unconjugated
dansyl–AVPI–alkyne (λex 340 nm, λem 477 nm). Consistent with the fluorescamine method, this test
gave 9.3 ± 1 dansyl–AVPI/NP and gave us the possibility to measure the amount of dansyl–AVPI
bounded to a sample obtained by CuAAC reaction with a 1:1 mixture of dansyl–AVPI–alkyne and
cRGD–alkyne. For this sample, an average number of 4.8 ± 1 dansyl–AVPI/NP was determined,
indicating by the difference that cRGD-alkyne reacted circa to the same extent.

3.2. Cytotoxicity of Peptide–NPs

The in vitro cell growth inhibitory efficacy was determined for the NPs and the unconjugated AVPI
peptide, by incubating A549, U-373, HeLa, Huvec, and fibroblast cells with increasing concentrations
of the compounds (0.1, 1.0, 3.0 µM) for 48 h. Cell viability is reported in Figure 2A; in general, all the
combinations tested were ineffective at the concentration of 0.1 µM; therefore, these data were omitted.
As expected, the simple peptide AVPI did not show any toxicity (data not shown), plausibly due to
poor-to-null intracellular uptake [24]. The NP–N3 appeared well tolerated, since no detectable decrease
in cell viability was observed after 48 h.
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two independent experiments (n = 2), each performed in triple. (B) Caspase-9 levels after 6 h of
incubation with either 1 µM AVPI/cRGD–NPs or AVPI–NPs. Bars indicate the increase in activity of the
treated cells compared to the control. Data are reported as mean ± SD from at least three independent
experiments. *** p < 0.001.

As for the peptide–NPs, 1 µM cRGD–NPs showed very little toxicity, and modest toxicity when
the concentration was increased to 3 µM. At the concentration of 1 µM, AVPI–NPs induced a decrease
of viability of about 25% in A549, U373, and HeLa cells, and of 33% in Huvec and fibroblast cells.
At the concentration of 3 µM, AVPI–NPs showed much higher toxicity against Huvec and fibroblasts,
reducing their viability by 60%, while the effect was lower in U373, A549, and HeLa cells, whose vitality
was decrased by 37% and 30%, respectively. In contrast, 1 µM AVPI/cRGD–NPs significantly inhibited
the proliferation of A549, U373, HeLa, and Huvec cells of about 60% and showed a comparatively
lower effect towards fibroblasts. Increasing the concentration of AVPI/cRGD–NPs to 3 µM led in
general to higher toxicity, whit the exclusion of A549 cells for which the toxicity remained the same.

3.3. Caspase-9 Activity

The activity of caspase-9 [9] was assayed by a fluorimetric method in A549, U373, HeLa, Huvec,
and fibroblast cells treated with 1 µM peptide–NPs for 6 h (Figure 2B). The AVPI–NPs gave a moderate
but well measurable increase of activity, about four-fold, as compared to untreated control cells. On the
other hand, AVPI/cRGD–NPs showed a >40-fold increase towards A549 and HeLa cells, Huvec, U373,
and a comparatively lower 10-fold increase in activity in fibroblasts.

3.4. Cellular Uptake of Peptide–NPs

The internalization of the fluorescent peptide–NPs was observed by confocal microscopy in
HeLa (α5 subunit-positive) [48] and in HT29 (α5 subunit-negative) cells [49,50]. In control HT29
cells, the internalization of AVPI–NPs was modest, and that of cRGD–NPs and AVPI/cRGD–NPs
was very poor, as shown by the low fluorescent signal in the cytoplasm (Figure 3A,B). By contrast,
HeLa cells exposed to cRGD–NPs and AVPI/cRGD–NPs, but not AVPI–NPs, gave a similar, very high
number of fluorescence-positive cells (Figure 3D,E). The scarce internalization of AVPI–NPs was
consistent with the modest decrease of viability of HT29 (about 20%, Figure 3C) and HeLa (approx.
25%, Figure 2A) cells.
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Figure 3. Fluorescence microscopy of cells after 1 h of treatment with fluorescent peptide–RhB–NPs
(red), counterstained with anti α-tubulin antibody (green) to visualize the cytoskeleton. (A) HT29
cells. Photographs were taken at 60×magnification, bar = 20 µm. (B) RhB-positive HT29 cells %, error
bars represent SD (n = 15 imaging fields), *** p < 0.001. (C) HT29 cell viability % in the presence of
AVPI–NPs; data represent mean ± SD (n = 6). * p < 0.05. (D) HeLa cells. Photographs were taken at
40×magnification. Bar 20 µm. (E) RhB-positive HeLa cells %, error bars represent SD (n = 15 imaging
fields), *** p < 0.001. (F) HeLa cells were treated or not with an anti-CD49e antibody or control IgG for
1 h, then incubated whit fluorescent AVPI/cRGD–NPs (red) and counterstained with Hoechst33342
dye (blue) to visualize the nuclei. Photographs were taken at 40× magnification. (G) HeLa cells
internalization %, error bars represent SD (n = 15 imaging fields), bar = 20 µm, *** p < 0.001.

The merge of the images of HeLa treated with cRGD–NPs or AVPI/cRGD–NPs showed some cells
colored in yellow/orange, but this observation was not indicative of colocalization between RhB and
α-tubulin. These interactions were quantified by analyzing the correlation and/or the overlap between
images, using the Pearson’s and Manders’ coefficients, respectively.

Finally, the cells were pre-incubated with anti-CD49e antibody or mouse immunoglobulin G
(IgG) antibody before exposure to AVPI/cRGD–NPs (Figure 3F). Microscopic observations showed
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that, in the presence of the antibody, the internalization was considerably reduced, as compared to
cells incubated in the presence of control IgG (Figure 3G).

4. Discussion

The aim of our study was to develop fluorescent probes with sufficient brightness, able to selectively
sustain a long-term interaction with cellular receptors in dilute conditions. High brightness, low in vivo
toxicity, and ease of functionalization with pharmacologically active biomolecules make fluorescent
silica-based NPs attractive platforms for diagnostic and theranostic applications in cancer [39]. Hence,
we prepared dye-doped silica NPs surrounded by an outer shell of the biocompatible polymer PEG,
which is expected to increase NP dispersion in physiological conditions (Figure 1A) and to oppose the
uptake by the reticuloendothelial system [51,52]. The covalent inclusion of the RhB derivative was
adopted to prevent dye leaking in the external environment, a behavior that can affect the signal-to-noise
ratio during optical imaging experiments. The influence of “minimal leakage” of fluorescent dyes from
NPs or nanosystems on the overall fluorescent signal recorded during real experiments with cells is
often a very difficult variable to quantify. For this reason, we preferred to circumvent this problem by
the covalent linking of the dye to the NP silica core.

To avoid the leakage of the cytotoxic and targeting compounds, the azide termini of PEG were
exploited for the covalent functionalization with peptide–alkyne partners. We designed the sequence
AVPI–alkyne: the AVPI N-terminal tetrapeptide of Smac/DIABLO maintained a binding affinity for
IAP BIR of 0.5 µM [10], while Gly and the C5 amine served as spacers. The cRGD–alkyne sequence
was designed on the basis of the well-known Kessler’s α5β1 integrin ligand c[RGDfK] [46]. It is well
known that simple peptides, such as the AVPI and RGD sequences, delivered to the body are subject
to enzymatic degradation and are poorly permeable through biological membranes. Nevertheless,
inorganic NP carriers can support the transport of peptides by protecting them from environmental
conditions while maintaining their stability [20,22].

The stability of the NPs was previously tested under different pseudo physiological and in vivo
experimental situations. Pluronic®F127/silica-core/PEG-shell NPs, doped with RhB and/or polymethine
cyanine dye, demonstrated outstanding stability in the presence of phosphate-buffered saline and
bovine serum albumin (PBS/BSA) [53]. These NPs were tested in small animals for in vivo total-body
imaging and intravital 3D imaging, giving well detectable signals for hours after injection. The same
silica-core/PEG-shell NPs, doped with cyanine 7 dye, were subcutaneously injected in animals, and the
in vivo fluorescence signal in the right axillary lymph node was detected for at least 8 h [54].

The cytotoxicity of the resulting peptide–NPs was evaluated in A549, U-373, HeLa, Huvec,
and fibroblast cells. Compared to AVPI–NPs, the dual functionalized AVPI/cRGD–NPs showed
much higher toxicity towards the cancer cells and reduced toxicity towards fibroblasts. Indeed,
the AVPI/cRGD–NPs inhibited the proliferation of A549, U373, HeLa, and Huvec cells of about 60%
already at the concentration of 1 µM, a significantly higher efficacy as compared to that of the previously
reported Smac/DIABLO–NPs [23,24]. To understand whether the peptide–NPs restored apoptotic
cancer cell death, the activity of caspase-9 was measured. While AVPI–NPs gave a moderate increase
of caspase activity, AVPI/cRGD–NPs showed a >40-fold increase in A549, HeLa, Huvec, and U373 cells
and a comparatively lower effect in fibroblasts.

The much higher apoptotic effect of AVPI/cRGD–NPs over AVPI–NPs towards cancer cells
appeared clearly correlated to integrin-mediated cellular uptake. Internalization of peptide–NPs was
observed in HeLa (α5 subunit-positive) and in control HT29 (α5 subunit-negative) cells. cRGD–NPs and
AVPI/cRGD–NPs showed much higher internalization in HeLa cells (Figure 3D,E) than AVPI–NPs, likely
mediated by the interaction between the RGD peptides and the integrin receptors. This observation
was supported by the almost negligible uptake of both RGD–NPs and AVPI/cRGD–NPs in the HT29
cell line not expressing the α5 subunit (Figure 3A). To confirm that the uptake of AVPI/cRGD NPs was
integrin-mediated, exclusion studies were carried out by incubating the cells with anti-CD49e antibody
or mouse IgG antibody before exposure to AVPI/cRGD–NPs. Microscopic observations showed that,
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in the presence of anti-CD49e, the internalization was strongly reduced, as compared to cells incubated
in the presence of the control IgG (Figure 3F).

5. Conclusions

In this paper, we described synthetic NPs mimicking the proapoptotic protein Smac/DIABLO,
constituted by a fluorescent silica core doped with RhB, coated with a PEG shell, and carrying the AVPI
peptide and/or a tumor-homing cRGD peptide. The bifunctional AVPI/RGD–NPs showed superior
toxicity towards cancer cells, correlated to increased levels of caspase activity, plausibly due to efficient
integrin-mediated transport into the cells, as shown by confocal microscopy, and modest toxicity
towards cells not expressing the α5 integrin subunit. In perspective, these Smac/DIABLO-mimetic
nanosystems can find applications in the treatment of cancer and, thanks to the combination with the
fluorescent dye, they can provide new insight into integrin-mediated internalization.
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Zverev, D.; Yavkin, B.; et al. Magnetical and optical properties of nanodiamonds can be tuned by particles
surface chemistry: Theoretical and experimental study. J. Phys. Chem. C 2014, 43, 25245–25252.

20. Jeong, W.-J.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.; Hong, S. Peptide–nanoparticle conjugates: A next
generation of diagnostic and therapeutic platforms? Nano Converg. 2018, 5, 38. [CrossRef]

21. Spicer, C.D.; Jumeaux, C.; Gupta, B.; Stevens, M.M. Peptide and protein nanoparticle conjugates: Versatile
platforms for biomedical applications. Chem. Soc. Rev. 2018, 47, 3574–3620. [CrossRef]

22. Pudlarz, A.; Szemraj, J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules.
Open Life Sci. 2018, 13, 285–298. [CrossRef]

23. Seneci, P.; Rizzi, M.; Ballabio, L.; Lecis, D.; Conti, A.; Carrara, C.; Licandro, E. SPION-Smac mimetic
nano-conjugates: Putative pro-apoptotic agents in oncology. Bioorg. Med. Chem. Lett. 2014, 24, 2374–2378.
[CrossRef]

24. Li, M.; Liu, P.; Gao, G.; Deng, J.; Pan, Z.; Wu, X.; Xie, G.; Yue, C.; Cho, C.H.; Ma, Y.; et al. Smac therapeutic
peptide nanoparticles inducing apoptosis of cancer cells for combination chemotherapy with Doxorubicin.
ACS Appl. Mater. Interfaces 2015, 7, 8005–8012. [CrossRef]

25. Arosio, D.; Manzoni, L.; Corno, C.; Perego, P. Integrin-targeted peptide- and peptidomimetic-drug conjugates
for the treatment of tumors. Recent Pat. Anti-Cancer 2017, 12, 148–168. [CrossRef]

26. Borbély, A.; Figueras, E.; Martins, A.; Bodero, L.; Raposo Moreira Dias, A.; López Rivas, P.; Pina, A.; Arosio, D.;
Gallinari, P.; Frese, M.; et al. Conjugates of cryptophycin and RGD or isoDGR peptidomimetics for targeted
drug delivery. Chem. Open 2019, 8, 737–742.

27. Conde, J.; Tian, F.; Hernández, Y.; Bao, C.; Cui, D.; Janssen, K.P.; Ibarra, M.R.; Baptista, P.V.; Stoeger, T.; de la
Fuente, J.M. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory
response in lung cancer mouse models. Biomaterials 2013, 34, 7744–7753. [CrossRef]

28. Duro-Castano, A.; Gallon, E.; Decker, C.; Vicent, M.J. Modulating angiogenesis with integrin-targeted
nanomedicines. Adv. Drug Deliv. Rev. 2017, 119, 101–119. [CrossRef]

29. Duret, D.; Grassin, A.; Henry, M.; Jacquet, T.; Thoreau, F.; Denis-Quanquin, S.; Coll, J.L.; Boturyn, D.;
Favier, A.; Charreyre, M.T. Polymultivalent polymer-peptide cluster conjugates for an enhanced targeting of
cells expressing αvβ3 integrins. Bioconjugate Chem. 2017, 28, 2241–2245. [CrossRef]

30. Mas-Moruno, C.; Fraioli, R.; Rechenmacher, F.; Neubauer, S.; Kapp, T.G.; Kessler, H. αvβ3- or
α5β1-Integrin-selective peptidomimetics for surface coating. Angew. Chem. Int. Ed. 2016, 55, 7048–7067.
[CrossRef]

31. Greco, A.; Maggini, L.; De Cola, L.; De Marco, R.; Gentilucci, L. Diagnostic implementation of fast and selective
integrin-mediated adhesion of cancer cells on functionalized Zeolite L Monolayers. Bioconjugate Chem. 2015,
26, 1873–1878. [CrossRef]

32. De Marco, R.; Greco, A.; Calonghi, N.; Dattoli, S.D.; Baiula, M.; Spampinato, S.; Picchetti, P.; De Cola, L.;
Anselmi, M.; Cipriani, F.; et al. Selective detection of alfa4beta1 integrin (VLA-4)-expressing cells using
peptide-functionalized nanostructured materials mimicking endothelial surfaces adjacent to inflammatory
sites. Pept. Sci. 2018, 110, e23081. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/12591734
http://dx.doi.org/10.1016/j.peptides.2009.08.001
http://www.ncbi.nlm.nih.gov/pubmed/19682522
http://dx.doi.org/10.1016/j.bmcl.2013.04.096
http://dx.doi.org/10.1016/j.bmcl.2014.05.095
http://www.ncbi.nlm.nih.gov/pubmed/24986663
http://dx.doi.org/10.1080/21691401.2018.1457039
http://dx.doi.org/10.1146/annurev-med-040210-162544
http://dx.doi.org/10.1186/s40580-018-0170-1
http://dx.doi.org/10.1039/C7CS00877E
http://dx.doi.org/10.1515/biol-2018-0035
http://dx.doi.org/10.1016/j.bmcl.2014.03.048
http://dx.doi.org/10.1021/acsami.5b00329
http://dx.doi.org/10.2174/1574892812666170203151930
http://dx.doi.org/10.1016/j.biomaterials.2013.06.041
http://dx.doi.org/10.1016/j.addr.2017.05.008
http://dx.doi.org/10.1021/acs.bioconjchem.7b00362
http://dx.doi.org/10.1002/anie.201509782
http://dx.doi.org/10.1021/acs.bioconjchem.5b00350
http://dx.doi.org/10.1002/bip.23081


Nanomaterials 2020, 10, 1211 12 of 13

33. Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H.J.; Schwaiger, M.; Weinmüller, M.; Räder, A.;
Steiger, K.; Kessler, H. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers 2017, 9, 116.
[CrossRef]

34. Katsamakas, S.; Chatzisideri, T.; Thysiadis, S.; Sarli, V. RGD-mediated delivery of small-molecule drugs.
Future Med. Chem. 2017, 9, 579–604. [CrossRef]

35. Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities.
Nat. Rev. Cancer 2010, 10, 9–22. [CrossRef]

36. Mingozzi, M.; Manzoni, L.; Arosio, D.; Dal Corso, A.; Manzotti, M.; Innamorati, F.; Pignataro, L.; Lecis, D.;
Delia, D.; Seneci, P.; et al. Synthesis and biological evaluation of dual action cyclo-RGD/SMAC mimetic
conjugates targeting αvβ3/αvβ5 integrins and IAP proteins. Org. Biomol. Chem. 2014, 12, 3288–3302.
[CrossRef]

37. Swain, J.; Mishra, A.K. Nile red fluorescence for quantitative monitoring of micropolarity and microviscosity
of pluronic F127 in aqueous media. Photochem. Photobiol. Sci. 2016, 15, 1400–1407. [CrossRef]

38. Basak, R.; Bandyopadhyay, R. Encapsulation of hydrophobic drugs in Pluronic F127 micelles: Effects of drug
hydrophobicity, solution temperature, and pH. Langmuir 2013, 29, 4350–4356. [CrossRef]

39. Bonacchi, S.; Genovese, D.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Luminescent silica
nanoparticles: Extending the frontiers of brightness. Angew. Chem. Int. Ed. 2011, 50, 4056–4066. [CrossRef]

40. Yamada, K.; Nagashima, I.; Hachisu, M.; Matsuo, I.; Shimizu, H. Efficient solid-phase synthesis of cyclic
RGD peptides under controlled microwave heating. Tetrahedron Lett. 2012, 53, 1066–1070. [CrossRef]

41. Greco, A.; Tani, S.; De Marco, R.; Gentilucci, L. Synthesis and analysis of the conformational preferences of
5-aminomethyloxazolidine-2,4-dione scaffolds: First examples of beta2-and beta2,2-homo-Freidinger lactam
analogues. Chem. Eur. J. 2014, 20, 13390–13404. [CrossRef]

42. Malesevic, M.; Strijowski, U.; Bächle, D.; Sewald, N. An improved method for the solution cyclization of
peptides under pseudo-high dilution conditions. J. Biotechnol. 2004, 112, 73–77. [CrossRef]

43. Rampazzo, E.; Bonacchi, S.; Juris, R.; Genovese, D.; Prodi, L.; Zaccheroni, N.; Montalti, M. Dual-mode,
anisotropy-encoded, ratiometric fluorescent nanosensors: Towards multiplexed detection. Chem. Eur. J.
2018, 24, 16743–16746. [CrossRef]

44. Rampazzo, E.; Bonacchi, S.; Juris, R.; Montalti, M.; Genovese, D.; Zaccheroni, N.; Prodi, L.; Rambaldi, D.C.;
Zattoni Andrea, C.; Reschiglian, P. Energy transfer from silica core–surfactant shell nanoparticles to hosted
molecular fluorophores. J. Phys. Chem. B 2010, 114, 14605–14613. [CrossRef]

45. Valenti, G.; Rampazzo, E.; Bonacchi, S.; Khajvand, T.; Juris, R.; Montalti, M.; Marcaccio, M.; Paolucci, F.;
Prodi, L. A versatile strategy for tuning the color of electrochemiluminescence using silica nanoparticles.
Chem. Commun. 2012, 48, 4187–4189. [CrossRef]

46. Haubner, R.; Finsinger, D.; Kessler, H. Stereoisomeric peptide libraries and peptidomimetics for designing
selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew. Chem. Int. Ed. 1997, 36, 1374–1389.
[CrossRef]

47. Adamou, R.; Coly, A.; Douabalé, S.E.; Saleck, M.L.; Gaye-Seye, M.D.; Tine, A. Fluorimetric determination of
histamine in fish using micellar media and fluorescamine as labelling reagent. J. Fluoresc. 2005, 15, 679–688.
[CrossRef]

48. Parolin, C.; Frisco, G.; Foschi, C.; Giordani, B.; Salvo, M.; Vitali, B.; Marangoni, A.; Calonghi, N. Lactobacillus
crispatus BC5 interferes with chlamydia trachomatis infectivity through integrin modulation in cervical cells.
Front. Microbiol. 2018, 9, 2630. [CrossRef]

49. Kemperman, H.; Wijnands, Y.M.; Roos, E. αV Integrins on HT-29 colon carcinoma cells: Adhesion to
fibronectin is mediated solely by small amounts of αVβ6, and αVβ5 is codistributed with actin fibers.
Exp. Cell Res. 1997, 234, 156–164. [CrossRef]

50. Schmidt, R.; Streit, M.; Kaiser, R.; Herzberg, F.; Schirner, M.; Schramm, K.; Kaufmann, C.; Henneken, M.;
Schäfer-Korting, M.; Thiel, E.; et al. De novo expression of the α5β1-fibronectin receptor in HT29 colon-cancer
cells reduces activity of c-src. increase of c-src activity by attachment on fibronectin. Int. J. Cancer 1998, 76,
91–98. [CrossRef]

51. Storm, G.; Belliot, S.O.; Daemen, T.; Lasic, D.D. Surface modification of nanoparticles to oppose uptake by
the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 1995, 17, 31–48. [CrossRef]

52. Huo, Q.; Liu, J.; Wang, L.Q.; Jiang, Y.; Lambert, T.N.; Fang, E. A new class of silica cross-linked micellar
core-shell nanoparticles. J. Am. Chem. Soc. 2006, 128, 6447–6453. [CrossRef]

http://dx.doi.org/10.3390/cancers9090116
http://dx.doi.org/10.4155/fmc-2017-0008
http://dx.doi.org/10.1038/nrc2748
http://dx.doi.org/10.1039/C4OB00207E
http://dx.doi.org/10.1039/C6PP00123H
http://dx.doi.org/10.1021/la304836e
http://dx.doi.org/10.1002/anie.201004996
http://dx.doi.org/10.1016/j.tetlet.2011.12.069
http://dx.doi.org/10.1002/chem.201402519
http://dx.doi.org/10.1016/j.jbiotec.2004.03.015
http://dx.doi.org/10.1002/chem.201803461
http://dx.doi.org/10.1021/jp1023444
http://dx.doi.org/10.1039/c2cc30612c
http://dx.doi.org/10.1002/anie.199713741
http://dx.doi.org/10.1007/s10895-005-2975-7
http://dx.doi.org/10.3389/fmicb.2018.02630
http://dx.doi.org/10.1006/excr.1997.3599
http://dx.doi.org/10.1002/(SICI)1097-0215(19980330)76:1&lt;91::AID-IJC15&gt;3.0.CO;2-J
http://dx.doi.org/10.1016/0169-409X(95)00039-A
http://dx.doi.org/10.1021/ja060367p


Nanomaterials 2020, 10, 1211 13 of 13

53. Rampazzo, E.; Boschi, F.; Bonacchi, S.; Juris, R.; Montalti, M.; Zaccheroni, N.; Prodi, L.; Calderan, L.; Rossi, B.;
Becchi, S.; et al. Multicolor core/shell silica nanoparticles for in vivo and ex vivo imaging. Nanoscale 2012, 4,
824–830. [CrossRef]

54. Helle, M.; Rampazzo, E.; Monchanin, M.; Marchal, F.; Guillemin, F.; Bonacchi, S.; Salis, F.; Prodi, L.;
Bezdetnaya, L. Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo
fluorescence lymph node mapping. ACS Nano 2013, 7, 8645–8657. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C1NR11401H
http://dx.doi.org/10.1021/nn402792a
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Chemistry 
	General Methods 
	c[Arg–Gly–Asp–D-Phe–Lys(hex–5–ynamide)] (cRGD–alkyne) 
	H–Ala–Val–Pro–Ile–Gly–pent-4-yn-1-amine (AVPI–alkyne) 
	PEG-Shell/Silica-Core Azide–NPs (NP–N3) 
	NP–N3 Functionalization with cRGD–alkyne and/or AVPI–alkyne 

	Biological Methods 
	Cells and Culture Conditions 
	Cell Viability Assays 
	Apoptosis 
	Cell Internalization 
	Competition Experiments 


	Results 
	Chemistry 
	Cytotoxicity of Peptide–NPs 
	Caspase-9 Activity 
	Cellular Uptake of Peptide–NPs 

	Discussion 
	Conclusions 
	References

