453 research outputs found

    Transient Anomaly Imaging in Visco-Elastic Media Obeying a Frequency Power-Law

    Full text link
    In this work, we consider the problem of reconstructing a small anomaly in a viscoelastic medium from wave-field measurements. We choose Szabo's model to describe the viscoelastic properties of the medium. Expressing the ideal elastic field without any viscous effect in terms of the measured field in a viscous medium, we generalize the imaging procedures, such as time reversal, Kirchhoff Imaging and Back propagation, for an ideal medium to detect an anomaly in a visco-elastic medium from wave-field measurements

    APPLIED SESSION: ELASTOGRAPHY FOR MUSCLE BIOMECHANICS

    Get PDF
    The purpose of this applied session is to demonstrate the potential of shear wave elastography for the study of muscle biomechanics using both real-time demo and recent results, with a special focus on sport applications (stretching, fatigue, pain, damage)

    Intervertebral disc characterization by shear wave elastography: an in-vitro preliminary study

    Get PDF
    Patient-specific numerical simulation of the spine is a useful tool both in clinic and research. While geometrical personalization of the spine is no more an issue, thanks to recent technological advances, non-invasive personalization of soft tissue’s mechanical properties remains a challenge. Ultrasound elastography is a relatively recent measurement technique allowing the evaluation of soft tissue’s elastic modulus through the measurement of shear wave speed (SWS). The aim of this study was to determine the feasibility of elastographic measurements in intervertebral disc (IVD). An in-vitro approach was chosen to test the hypothesis that SWS can be used to evaluate IVD mechanical properties and to assess measurement repeatability. Eleven oxtail IVDs were tested in compression to determine their stiffness and apparent elastic modulus at rest and at 400 N. Elastographic measurements were performed in these two conditions and compared to these mechanical parameters. The protocol was repeated six times to determine elastographic measurement repeatability. Average SWS over all samples was 5.3 ± 1.0 m/s, with a repeatability of 7 % at rest and 4.6 % at 400 N; stiffness and apparent elastic modulus were 266.3 ± 70.5 N/mm and 5.4 ± 1.1 MPa at rest, respectively, while at 400 N they were 781.0 ± 153.8 N/mm and 13.2 ± 2.4 MPa. Correlations were found between elastographic measurements and IVD mechanical properties; these preliminary results are promising for further in-vivo application.The authors are grateful to the ParisTech BiomecAM chair program on subject-specific musculoskeletal modelling for funding (with the support of Proteor, ParisTech and Yves Cotrel Foundations)

    Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon

    Full text link
    Mechanical properties of biological tissues are of key importance for proper function and in situ methods for mechanical characterization are sought after in the context of both medical diagnosis as well as understanding of pathophysiological processes. Shear wave elastography (SWE) and accompanying physical modelling methods provide valid estimates of stiffness in quasi-linear viscoelastic, isotropic tissue but suffer from limitations in assessing non-linear viscoelastic or anisotropic material, such as tendon. Indeed, mathematical modelling predicts the longitudinal shear wave velocity to be unaffected by the tensile but rather the shear viscoelasticity. Here, we employ a heuristic experimental testing approach to the problem to assess the most important potential confounders, namely tendon mass density and diameter, and to investigate associations between tendon tensile viscoelasticity with shear wave descriptors. Small oscillatory testing of animal flexor tendons at two baseline stress levels over a large frequency range comprehensively characterized tensile viscoelastic behavior. A broad set of shear wave descriptors was retrieved on the unloaded tendon based on high frame-rate plane wave ultrasound after applying an acoustic deformation impulse. Tensile modulus and strain energy dissipation increased logarithmically and linearly, respectively, with the frequency of the applied strain. Shear wave descriptors were mostly unaffected by tendon diameter but were highly sensitive to tendon mass density. Shear wave group and phase velocity showed no association with tensile elasticity or strain rate-stiffening but did show an association with tensile strain energy dissipation. The longitudinal shear wave velocity may not characterize tensile elasticity but rather tensile viscous properties of transversely isotropic collagenous tissues

    Intervertebral disc characterisation by elastography: a preliminary study.

    Get PDF
    BiomecAM chai

    Non-invasive biomechanical characterization of intervertebral discs by shear wave ultrasound elastography: a feasibility study.

    Get PDF
    PublishedJournal ArticleThe final publication is available at Springer via http://dx.doi.org/10.1007/s00330-014-3382-8OBJECTIVES: Although magnetic resonance is widely spread to assess qualitatively disc morphology, a simple method to determine reliably intervertebral disc status is still lacking. Shear wave elastography is a novel technique that allows quantitative evaluation of soft-tissues' mechanical properties. The aim of this study was to assess preliminary the feasibility and reliability of mechanical characterization of cervical intervertebral discs by elastography and to provide first reference values for asymptomatic subjects. METHODS: Elastographic measurements were performed to determine shear wave speed (SWS) in C6-C7 or C7-T1 disc of 47 subjects; repeatability and inter-operator reproducibility were assessed. RESULTS: Global average shear wave speed (SWS) was 3.0 ± 0.4 m/s; measurement repeatability and inter-user reproducibility were 7 and 10%, respectively. SWS was correlated with both subject's age (p = 1.3 × 10(-5)) and body mass index (p = 0.008). CONCLUSIONS: Shear wave elastography in intervertebral discs proved reliable and allowed stratification of subjects according to age and BMI. Applications could be relevant, for instance, in early detection of disc degeneration or in follow-up after trauma; these results open the way to larger cohort studies to define the place of this technique in routine intervertebral disc assessment. KEY POINTS: A simple method to obtain objectively intervertebral disc status is still lacking. Shear wave elastography was applied in vivo to assess intervertebral discs. Elastography showed promising results in biomechanical disc evaluation. Elastography could be relevant in clinical routine for intervertebral disc assessment.ParisTech BiomecAM chair programParisTechYves Cotrel FoundationsSociété GénéraleProteorCove

    Hardness and toughness of sodium borosilicate glasses via Vickers's indentations

    Get PDF
    International audienceThis study investigates the mechanical response of sodium borosilicate (SBN) glasses as a function of their chemical composition. Vickers's indentation tests provide an estimate of the material hardness (H V) and indentation fracture toughness (K C VIF) plus the amount of densification/shear flow processes. Sodium content significantly impacts the glass behavior under a sharp indenter. Low sodium glasses maintain high connected networks and low Poisson's ratios (ν). This entails significant densification processes during deformation. Conversely, glasses with high sodium content, i.e. large ν, partake in a more depolymerized network favoring deformation by shear flow. As a consequence , indentation patterns differ depending on the processes occurring. Densification processes appear to hinder the formation of halfpenny median–radial cracks. Increasing ν favors shear flow and residual stresses enhance the development of halfpenny median–radial cracks. Hence, K C VIF decreases linearly with ν

    Intervertebral disc characterization by shear wave elastography: An in vitro preliminary study.

    Get PDF
    Published onlineJOURNAL ARTICLEAuthor's accepted (post-print) manuscriptThe final version of record is available at http://dx.doi.org/10.1177/0954411914540279Patient-specific numerical simulation of the spine is a useful tool both in clinic and research. While geometrical personalization of the spine is no more an issue, thanks to recent technological advances, non-invasive personalization of soft tissue's mechanical properties remains a challenge. Ultrasound elastography is a relatively recent measurement technique allowing the evaluation of soft tissue's elastic modulus through the measurement of shear wave speed. The aim of this study was to determine the feasibility of elastographic measurements in intervertebral disc. An in vitro approach was chosen to test the hypothesis that shear wave speed can be used to evaluate intervertebral disc mechanical properties and to assess measurement repeatability. In total, 11 oxtail intervertebral discs were tested in compression to determine their stiffness and apparent elastic modulus at rest and at 400 N. Elastographic measurements were performed in these two conditions and compared to these mechanical parameters. The protocol was repeated six times to determine elastographic measurement repeatability. Average shear wave speed over all samples was 5.3 ± 1.0 m/s, with a repeatability of 7% at rest and 4.6% at 400 N; stiffness and apparent elastic modulus were 266.3 ± 70.5 N/mm and 5.4 ± 1.1 MPa at rest, respectively, while at 400 N they were 781.0 ± 153.8 N/mm and 13.2 ± 2.4 MPa, respectively. Correlations were found between elastographic measurements and intervertebral disc mechanical properties; these preliminary results are promising for further in vivo application.ParisTech BiomecAM chair programProteorParisTechYves Cotrel Foundation

    In vivo cervical intervertebral disc characterisation by elastography.

    Get PDF
    PublishedJournal ArticleThis is an Accepted Manuscript of an article published by Taylor & Francis in Computer Methods in Biomechanics and Biomedical Engineering on 30/07/2014, available online: http://www.tandfonline.com/10.1080/10255842.2014.931515Not availableParisTech BiomecAM chair programProteorSociété GénéraleCoveaParisTechYves Cotrel Foundation
    corecore