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This study investigates themechanical response of sodiumborosilicate (SBN) glasses as a function of their chemical
composition. Vickers's indentation tests provide an estimate of thematerial hardness (HV) and indentation fracture
toughness (KCVIF) plus the amount of densification/shear flow processes. Sodium content significantly impacts the
glass behavior under a sharp indenter. Low sodium glasses maintain high connected networks and low Poisson's
ratios (ν). This entails significant densification processes during deformation. Conversely, glasses with high sodium
content, i.e. large ν, partake in a more depolymerized network favoring deformation by shear flow. As a conse-
quence, indentation patterns differ depending on the processes occurring. Densification processes appear to hinder
the formation of half-pennymedian–radial cracks. Increasing ν favors shear flow and residual stresses enhance the
development of half-penny median–radial cracks. Hence, KC

VIF decreases linearly with ν.
© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Portable electronic devices frequently require thin lightweight glass
used to protect the internal electronics. As such these glasses need to be
resilient to external pressures. A common test to study these protective
glasses is micro-indentation from which two important and standard
measurements are extracted: (1) hardness (material's resistance to
permanent deformation, HV) and (2) indentation fracture toughness
(material's resistance to fracture, KC). These tests classify the glass's
mechanical response into two groups: anomalous and normal behavior.
Anomalous glasses predominantly densify under high external pres-
sures. These glasses have a low atomic packing density; thus, the
relative movement of the Si–O–Si linkage under pressure leads to the
volume shrinkage [1–4]. On the other hand, normal behavior implies
volume conserving shearflow. This is evidenced by a plastic flow gener-
ating pile-up ofmatter in the vicinity of the indentationwithout volume
change [5–8]. Typically broken bonds and cations favor this phenome-
non [9]. The degree at which a glass behaves normally and anomalously
significantly depends on the glass' chemical composition [9–11].

Residual indention patterns vary significantly with the chemical
composition [12]. Typically, anomalous glasses exhibit cone crack,
, CEA Saclay, CNRSUMR 3680, F-
whereas normal glasses predominantly exhibit radial–median cracks
[9]. Previous, in-situ indentation studies of normal and anomalous
glasses emphasize variations in deformation processes and effects in
the residual stress levels [13]. Variations in contribution of densification
versus shearflowalter the indentation shape, the crack appearance and the
toughnessmeasurements [5,11,13]. Furthermore, Hagan [7,8,14] highlight-
ed that flow lines which appear in the indentation imprints can pile-up to
produce seed cracks for median and radial cracks. In order to discriminate
between shear flow and densification in glasses, researchers developed a
simple test to estimate the amount of permanent densification under
an indenter in glasses and the amount of plastic flow [15–18].

This paper investigates themechanical response due to indentation in
eight SBN glasses of modulated chemical composition. The glass's
mechanical response depends on the glass structure. Imaging of the
indents provides a means to obtain the hardness (HV), the crack
appearance probability (PC) and the indentation fracture toughness
(KCVIF, VIF implies Vickers's indentation fracture). To understand howmat-
ter flows beneath the indenter, AFM imaging before and after annealing
discriminates between densification and shear flow mechanisms. For
the reader's convenience, Appendix A provides a list of symbols, there
meaning, and when appropriate the equation used to calculate them.

The following sections detail experimental techniques: (1) glass fab-
rication, (2) techniques used in understanding the glass properties
(density, elastic moduli, MAS NMR); and (3) measuring and extracting
information on the glass's response to Vickers's indenter. The Results
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Table 1
Target and measured ICP-AES molar compositions (where [∙] ≡ mol%) of elaborated glass samples with their RSBN and KSBN values and physical properties: density (ρ); glass transition
temperature (Tg); Young's modulus (E); Poisson's ratio (ν); 〈CN〉 is the mean coordination number of the boron atoms; the concentration of [4]B per volume unit deduced from NMR
measurements and ICP-AES results and number of NBO per volume unit (NNBO) deduced from Eq. (4). Target and ICP-AES measured molar composition and densities were previously
published by Barlet et al. [19]. It was not possible to fabricate just one batch of glass to produce all samples; thus multiple batches were fabricated. All batches are within the 10% error
of the ICP-AES measurement. Each SBN glass composition has an associated symbol in the subsequent figures. Glass's names won't be recalled on the figures below for clarity.

Name Target values Measured via ICP-AES RSBN measured KSBN measured ρ
g

cm3

� � Tg
(°C)

E
(GPa)

ν 〈CN〉 [4]B · 1021

(cm−3)
NNBO · 1021

(cm−3)
Symbols

[SiO2] [B2O3] [Na2O] [SiO2] [B2O3] [Na2O]

SBN 12 59.6 28.2 12.2 59.6 23.9 16.5 0.69 2.5 2.463 543 80.1 0.209±0.004 3.60 6.78 1.022
SBN 25 50.7 23.9 25.4 52.6 20.6 26.8 1.30 2.5 2.545 535 80.3 0.238±0.001 3.70 7.22 5.91
SBN 30 47.3 22.3 30.4 51 20.1 28.6 1.44 2.5 2.541 494 74.7 0.255±0.002 3.68 6.77 7.36
SBN 35 44 20.6 35.4 46.9 18.6 34.5 1.85 2.5 2.537 467 76.7 0.264±0.0014 3.62 5.65 11.21
SBN 14 67.8 18 14.2 70 15.8 14.2 0.89 4.4 2.474 588 81.8 0.212±0.004 3.72 5.49 1.34
SBN 63 63.2 16.8 20.0 66.7 14.1 19.2 1.35 4.7 2.524 573 81.9 0.226±0.001 // // //

SBN 59 59.2 15.8 25 61.1 13.3 25.5 1.91 4.5 2.534 539 77.2 0.230±0.01 3.79 5.22 7.39
SBN 55 55.3 14.7 30 58.0 12.9 29.1 2.25 4.5 2.538 505 72.8 0.251±0.006 3.76 4.86 7.49
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section presents structural properties, HV, PC, KC
VIF, and variations in

contribution of densification and shear flowprocesses in the permanent
deformation of sodium borosilicate (SBN) glasses. The Discussion
section expounds the glass structure with their mechanical response
to a Vickers's indenter. This part also compares and contrasts results
presented in Sellappan et al. paper [18]. Furthermore, this section
estimates the residual stresses induced during loading and after total
unloading.

2. Experimental procedure

This section contains three subsections. It first describes the elabora-
tion process of the glasses studied herein. Then, it details tests used to
analyze the glasses' structural/material properties. Finally, it presents
tests to understand the material response to microindentation.

2.1. Glass elaboration

Studies herein employ eight sodium borosilicate (SBN) glasses
elaborated in-house [19]. During the elaboration process, manual
homogenization of the silica (SiO2), orthoboric acid (H3BO3), and
sodium carbonate (Na2CO3) powders occurs. Platinum/gold (Pt/Au)
crucibles retain the homogenized powder during the glass melting
process. The formation of the glass melt undergoes three principle
steps. Initially, the dehydration of the orthoboric acid takes place at
200 °C for 2 h. Next, the decarbonation of sodium carbonate Na2CO3

occurs at 800 °C for 3 h to avoid bubble formation. The final stage
produces the glass melt. Depending on the glass composition, this
stage occurs between 1100 °C and 1300 °C for 3 h. To avoid residual
stress during the cooling process, the glass melt is transferred into a
(a)
(b)

Fig. 1. (a)A typical indentation imprint used to determine the indentation diagonal length, (di an
showing the evolution of indentation prints before (black solid line) and after annealing (reddot
respectively.
preheated carbon crucible whose temperature is approximately Tg
(glass transition temperature). Subsequently, the glass melt enters in a
second furnace and cools at a slower rate (10 °C/h) to release the residual
stresses.

ICP-AES measurements (conducted by a third party, Prime Verre)
verify the chemical compositions of the SBN glasses. Table 1 summa-
rizes the target and measured values. ICP-AES measurements give
approximately 10% error for each oxide. Several batcheswere fabricated
to produce all samples. All of them are within the 10% error of the
ICP-AES measurement. The glasses are classified depending on their

RSBN ¼ Na2O½ �
B2O3½ � and KSBN ¼ SiO2½ �

B2O3½ � ratios.

2.2. Structural investigation

A glass's mechanical response is linked intrinsically to its structure.
Thus, it is important to understand and quantify several glass parameters
including density, elastic moduli, and the environment around the boron
atoms.

2.2.1. Density, ρ
The densities of the glasses are estimated by Archimedes' principle.

The geometry is a cylinder of thickness 10 mm and diameter 30 mm.
Tests are conducted at ambient conditions using a hydrostatic balance.
Initially, the glass samples are weighted in air (md) and water (mw).
Then by multiplying by the density of water (ρw) one can arrive at the
density of the sample (ρ):

ρ ¼ md

md−mw
� ρw ð1Þ
dmarked by a continuous line) and to estimate thepile-up profile (dotted line). (b) Sketch
ted line).V+andV− represent the volume above andbelow the baseline (gray dotted line),



Fig. 2. Sketch of a Vickers's indent and notations used to define KC
VIF: di is the indentation

diagonal length from one indent and ci is the crack lengthmeasured from the indentation
center. 0.5 1 1.5 2 2.5
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Fig. 3. Density, ρ, as a function of RSBN.

68 M. Barlet et al. / Journal of Non-Crystalline Solids 417–418 (2015) 66–79
2.2.2. Young modulus and Poisson's ratio
Ultrasonic echography techniques provide a means to estimate the

elastic moduli and Poisson's ratio using a 5MHz piezoelectric transducer.
Tests invoke the same specimens as for the density tests. The specimen
thickness is precisely determined using a digital micrometer with an
accuracy of ±1 μm. The ultrasonic velocities of longitudinal (VL) and
transverse (VT) acoustic waves are calculated from the thickness and
transit time values. The Young modulus (E) and Poisson's ratio (ν) are
then related to VL and VT via:

E ¼ ρ �
3V2

L−4V2
T

� �
VL=VTð Þ2−1

ð2Þ

ν ¼ V2
L−2V2

T

2 V2
L−V2

T

� � ð3Þ

Table 1 presents E and ν for the eight different SBN glasses.

2.2.3. [11]B MAS NMR
[11]B magic angle spinning (MAS) nuclear magnetic resonance

(NMR) spectra were collected on a Bruker AVANCE II 500WB spectrom-
eter operating at a Larmor frequency of 160.14 MHz (magnetic field
11.72 T) using a 4 mm (outer diameter of ZrO2 rotor) Bruker (boron-
free) CPMAS probe. For each SBN composition, cylinder samples
(0.8 × 2.96 mm2) were spun at a frequency of 14 kHz, and a recycle
delay of 2 s and a pulse length of 1 μs (tip angle of about 20 °) were
used to ensure quantitative data of the spectra. Data processing
occurred via an in-house code (for details see reference [20]). [11]B
magic angle spinning nuclear magnetic resonance (MAS NMR) experi-
ments provide complementary information on the glass structure via
revealing the boron environment. The high symmetry around [4]B
Table 2
Experimental values (Pid, Vi

+ (μm3), Vi
− (μm3), Vi

+/Vi
− (%), Va

−, Va
+ and Pad) obtained from the

quantification of the densification and the shear flow process from Eqs. (8) and (9), respectively
by di, the average of the two.

Name Diagonals di
(μm)

c
(μm)

HV

(MPa)
CR
(g)

KC
VIF

(MPa·m1/2)
Pid
(μm)

d1 d2

SBN 12 10.4 10.6 37±2
300 g 8200±300 270 0.98±0.09

300 g 1.012
SBN 25 12.0 12.2 14.1±0.6 6340±100 26 0.69±0.07 1.037
SBN 30 12.7 13.3 15±1 5400±200 32 0.61±0.06 1.19
SBN 35 13.5 13.7 16.7±0.8 4900±300 29 0.56±0.06 1.2
SBN 14 11.2 11.3 11.9±3 7200±300 45 0.81±0.08 0.88
SBN 63 12 11.9 13±3 6400±200 38 0.74±0.05 0.99
SBN 59 13.1 13.1 13.9±0.9 5370±90 37 0.71±0.07 1.03
SBN 55 14 13.25 15.1±4 4900±100 40 0.65±0.05 1.1
leads to a SMALL quadrupolar coupling (0.2–0.4 MHz) in contrast to
the trigonal [3]B unit (2.5–2.7 MHz). Thus, the boron environment
reveals the proportions of [3]B and [4]B.

Two assumptions enable scientist to estimate the number of
non-bridging oxygen atoms (note a NBO can be either Si or B atoms)
in a SBN glass. First, each [4]B structural unit has one Na+ ion attaching
to it, and the Na+ ion acts as a network compensator. Second, all the
other Na+ ions act as network modifiers. This gives one NBO per
network modifying Na+ ion. The equation to calculate this is:

NNBO ¼ NNa−N½4�B : ð4Þ

NNa, NNBO, and N[4]B are the total number of Na+ ions, the number of
NBO, and the number of Na+ acting as network compensators (equiva-
lently the number of [4]B) in the system, respectively. Table 1 presents
these results.

2.3. Mechanical testing

This subsection details the experiments used to obtain the glass's
mechanical response due to a Vickers'smicro-indenter. The first subsec-
tion presents the geometry of the samples. It first presents the instru-
ment and techniques used for the Vickers's indentations. Then, it
details techniques for imaging imprints. The following sections detail
how analyzing the images reveals the hardness, crack resistance, and
indentation fracture toughness. Finally, the last subsection details the
annealing procedures and how to extract the information concerning
the densification and shear flow processes.
AFM images of the indentation prints in the various SBN glasses. VR and VP present the
. d1 and d2 record the asymmetry of the indenter; henceforth, these valueswill be replaced

Vi
+

(μm3)
Vi
−

(μm3)
Vi
+/Vi

−

(%)
Va
−

(μm3)
Va
+

(μm3)
Pad
(μm)

VR VP

5 36.7 13.6 4 14.4 0.665 52.8 16.3
13 54.8 23.7 12 31.1 0.805 30.8 25.6
17 62 27.4 16.3 47.2 0.912 12.6 28.6
19.1 70.1 27.3 15.5 60.2 1.08 9 32.4
7 35.2 19.8 10 26.1 0.822 34.3 11.3

10.8 49.3 21.9 9 31.7 0.844 32 25.6
12 55.3 21.7 15 41.7 0.846 30 16.3
12 56.8 21.1 15 43.9 0.857 28 15.8



Fig. 4. Evolution of indentation prints for the KSBN ~ 2.5 series (from left to right: SBN 12, SBN 25, SBN 30, and SBN 35) at 50 g in ambient conditions. An optical camera coupled with the
Vickers's indenter captures the imprints within 5 min after indentation.

Fig. 5. Evolution of indentation prints for the KSBN ~ 2.5 series (from left to right: SBN 12, SBN 25, SBN 30, and SBN 35) at 50 g in ambient conditions. An AFM scans the indents after
indentation.
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Fig. 6. Hardness values, HV, versus RSBN for SBN glasses (at 50 g during 15 s in ambient
conditions).
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2.3.1. Sample preparation
Indentation experiments require samples with two parallel surfaces.

Samples herein are rectangular parallelepipeds of size 5 × 5 × 25 mm3.
Indentations take place on one of the 5 × 25 mm2 faces. Surface quality
affects the crack behavior of glasses; therefore diamond grinding disks
optically polish the samples.

2.3.2. Mechanical testing by Vickers's indentation
Vickers's microindentation tests customarily give sample hardness

(HV) and indentation fracture toughness (KC
VIF). Indentations occur at

22 ± 1 °C in air (ambient conditions for humidity) with an Aton Paar
MHT-10 hardness tester. Before each set of indents, an Aton Paar
MHT-10 hardness tester underwent a series of tests on standard
samples to ensure proper regulations. The indentation load (P), varies
from 25 g to 300 g. The dwelling time at maximum load is 15 s for all
tests. Experimental conditions remain the same during the tests.

2.3.3. Image acquisition of indentation imprints
An atomic force microscopy (Dimension Icon Nanoscope V Bruker)

images the indentation imprints in PeakForce Tapping mode. The AFM
cantilever (Bruker's RTESPA) is a silicon tip with a nominal radius of
8 nm and nominal force constant of 40 N/m. The scan size is sufficiently
large with respect to the imprint size to permit correcting the AFM
image planarity. Typically, the image sizes are greater than twice the
indentation diagonal. The estimated errors for measuring the length
by AFM are less than 2% in the X and Y directions and about 2% in the
Z direction. Post-image analysis reveals 4 parameters per indent
(Fig. 1):

1. Residual indentation depth: Pid
2. Indentation diagonal length: di
3. Indentation volume: Vi−, volume measured below the free surface
4. Volume of pile-up: Vi+, volume measured above the free surface.

2.3.4. Hardness determination
Vickers's hardnessmeasures thematerial ability to resist permanent

deformation induced by a harder material. Analyzing the indentation
imprints reveals a permanent deformation due to the Vickers's indenter
at specific loads. Knowing the diagonal length of the imprint indentation
(di, Fig. 1, a) and P, the Vickers's hardness is:

HV ¼ 1:8544P
d2i

: ð5Þ

At least 10 indentations occur at 50 g (0.49 N) maximum load.
Indentations which do not form well-developed cracks are rejected.

2.3.5. Crack resistance, CR
Vickers's indentation can cause cracks to initiate off the corners of

the indenter. The probability of crack appearance, PC, is the average
number of radial cracks per corner for a given load. This is conducted



Fig. 7. Set of optical images in SBN 14 acquired at increasing loads. As the load increases, the number of cracks initiating off the corners of the indenter increases.
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at multiple loads. The load where PC exceeds 50% defines the crack
resistance, CR [21].

2.3.6. KC measurements from indentation
Fracture toughness, KC, defines the material's resistance to failure

under vacuum. Herein, estimates for KC arise by studying the length of
the cracks generated off the corners of the indenter (see Fig. 2). (Note:
Henceforth, KC arising from indentation studies will be referred to as
KC
IND) Many models exist in literature to estimate KC

IND by indentation
[12,22–31]. There are two predominate models: half-penny
median–radial cracks (c N 1.25d; c being the average distance (〈ci〉)
from the indentation center to the crack tip and d the mean of 〈di〉
values obtained for one indent) and Palmqvist cracks (c b 1.25d).

Lawn's et al. model assumes well-developed half-penny median–
radial cracks [12,23]. These cracks emerge when the load is sufficiently
high insuring c N 1.25d. Palmqvist cracks, on the other hand, exists
when c b 1.25d. These cracks extend fromopposite indentation corners;
however, they do not connect to each other [32]. In general, half-penny
median–radial cracks models follow the following relationship [12,23,
32,33]:

KIND
C ¼ α

E
HV

� �n P
cð Þ3=2 ð6Þ

where α is a calibration constant. n depends on the model. Standard
values of n are 0 [27], 0.4 [26,32], 0.5 [28], and 2/3 [12]. Weber et al.
uses Lawn's ASTM report to arrive at the following equation:

KVI F
C ¼ 0:057� HV �

ffiffiffiffiffiffiffiffi
d=2

q E
HV

� �0:4
� c

d=2ð Þ
� �−3=2

: ð7Þ

This is predominantly valid for well-defined indentation patterns
with crack lengths fulfilling the condition c N 1.25d. However, Weber
suggests that it is also acceptable for Palmqvist cracks as it resembles
0 50 100 150 200
0
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100
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P
c(
%
)

(a)

Fig. 8. (a) Crack appearance probability for all the SBN glasses KSBN= 2.1 series (blue) and KSBN

the SBN glasses KSBN = 2.1 series (blue) and KSBN = 3.7 series (red) for loads between 0 g and
Lankford et al. equation [29,30,32]. This is favorable as SBN 12 does
not fulfill the condition of c N 1.25d at 50 g (0.49 N); yet, all other
samples meet this requirement. If the indents do not have 4 cracks,
the indentation pattern is not included in the averages. (It is note
worthy that error bars in the figures correspond to one standard
deviation of themean values [34].) A force of 50 g will be invoked for all
KC
VIF measurements (with an exception for SBN 12 where higher loads

are applied). Due to stress corrosion cracking (ambient conditions for
humidity), c can varywith time after indentation [28]. To avoid substan-
tial errors in the KC

VIF evaluation, an optical microscope images the
surface crack pattern within 5 min after indentation.

2.4. Complementary measurements of Vickers' indentations: densification
and shear flow processes

The high pressures induced by the sharp indenter yields both revers-
ible (elastic) response and irreversible (plastic) deformations. The irre-
versible component is mainly due to densification or volume conserving
shear flow [5,16,35–39]. Yoshida et al. [16] propose a 3D technique to
estimate the fraction of densification from the comparison of the indenta-
tion imprints before and after the annealing: Upon annealing, the indent
shape will change due to the recovery of densified areas [16,37,40,41].
This procedure has recently been extended by Sellappan et al. [18] to
quantify the amount of volume conserving shear flow (VP). The following
subsections present the methods applied to quantify first the densifica-
tion and subsequently the isochoric shear flow process.

2.4.1. Densification estimation
Studying the volume ratio before and after annealing provides an

easy way to estimate the amount of densified volume. As revealed
above, post-processing of AFM scans of the indent imprints reveals 4
parameters (Fig. 1): Pid, di, Vi

−, and Vi
+. Subsequently, annealing the

samples at 0.9 Tg for 2 h in air relieves a significant proportion of the
densified regions [16,37,40,41]. After annealing, imprints are imaged.
P
c

0 10 20 30 40 50 60
0

20

40

60

80

100

Load (g)

(%
)

(b)

=3.7 series (red) at different loads. (b) A zoom of the crack appearance probability for all
50 g.
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Fig. 9. Toughness values KC
VIF of SBN glasses depending on RSBN for KSBN ~ 2.5 series (blue)

and KSBN ~ 4.5 series (red).
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depending on KSBN. For KSBN ~ 2.5, the ratio increases initially then appears to stabilize. For
KSBN ~ 4.5, the ratio decreases slightly.
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Post-treatment of the images reveals da, Pad, Va− and Va
+ (Fig. 1). Table 2

presents these parameters. The densified volume is then estimated
through the recovered volume ratio (VR) of the indent below the
surface:

VR ¼ V−
i −V−

að Þ þ Vþ
a −Vþ

i

� �
V−
i :

: ð8Þ

2.4.2. Shear flow
Shear flow represents a plastic flow generating a displacement of

matter without volume change. The pile-up around the indents exposes
the amount of shear flow. Profiles extracted from Fig. 1 follow the
dotted blue line. Sellappan et al. [18] propose VP to study the volume-
conserving flow ratio:

VP ¼ 2Vþ
i −Vþ

a

� �
V−
i

ð9Þ

(Va+ − Vi
+) represents the densified volume contribution in the pile-up

area. The denominator in Eq. (9) normalizes the shear flow.

3. Results

This section details the structural and mechanical property investi-
gations. First, this section presents results concerning the structural
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Fig. 10. The recovery volume decreases with RSBN. Yet, the slopes (mKSBN�2:5 ¼ −0:4 and
mKSBN�4:5 ¼ −0:04) depend significantly on KSBN.
properties of SBN glasses. Following this, the section provides results
concerning the indentation. The end of the section presents the varia-
tions of VR and VP.

3.1. Structural investigation

3.1.1. Density, ρ
Archimedes' principle gives the density, ρ, for the different glasses.

Fig. 3 shows how ρ varieswithRSBN ¼ Na2O½ �
B2O3½ � (where ½·�≡mol%). Previous

literature details a complex 3D analysis concerning density's depen-

dence on KSBN ¼ SiO2½ �
B2O3½ � and RSBN [19,42–44]. When possible the same

batches of glasses were used herein as in the Barlet et al. [19] study.

3.1.2. Elastic moduli, E and ν
Asmentioned in Subsection 2.2.2, E and ν result from bothmeasure-

ments of the longitudinal wave (VL) and of the transverse wave (VT)
speeds. Appendix B contains these raw measurements. Eqs. (2) and
(3) give way to the estimates of E and ν. Table 1 presents the results
of E and ν. Clearly E and ν depend on the chemical composition of the
SBN glasses. Conversely, E and ν do not vary monotonically with RSBN.

3.1.3. 11B MAS NMR
Table 1 presents results on the amount of [4]B in each SBN sample.

The chemical composition of silicate glasses significantly affects the
[4]B count [45,46].
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Fig. 12. The pile-up ratio (VP) which is related to the volume-conserving shear flow as a
function of RSBN. The tendencies differ for approximately constant KSBN.
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Fig. 13. (a) Evolution of hardness, HV (at 50 g in ambient conditions), versus the concentration of non-bridging oxygen (NBO) deduced from NMR measurements. (b) Evolution of
hardness, HV (at 50 g in ambient conditions), versus percentage of oxide formers determined from ICP measurements.
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3.2. Mechanical testing results

Immediately after unloading the Vickers' indenter, an optical
microscope coupled with the Vickers's indenter visually captures the
features of the indents. Fig. 4 displays indentation imprints for the
KSBN ~ 2.5 series (from left to right: SBN 12, SBN 25, SBN 30, and SBN
35). A clear discrepancy appears according to the crack behavior. For
low amounts of sodium (i.e. SBN 12) at 50 g, no cracking occurs. On
the other hand, cracks emerge at the surface in glasses with higher
sodium content. In addition, the light reflection seen in SBN 35 glass
can be a sign of pile-up.

Fig. 5 displays indentation prints for the KSBN ~ 2.5 series (from left to
right: SBN 12, SBN25, SBN 30, and SBN35) at 50 g in ambient conditions
via an AFM. Subsequently, these AFM images aid in enumerating Pid, di,
V�
i and Vþ

i Table 2 presents the average results of at least 10 different
indents.

3.2.1. Hardness, HV

Knowing the maximum load applied (P = 50 g) during the indent
along with di, Eq. (5) gives HV for each sample. HV results herein
represent the average of at least 10 tests. Table 2 presents the obtained
values. Fig. 6 presents the evolution of HV (MPa) as a function of RSBN.
The chemical composition of silicate glasses significantly affects the

hardness values. For constant KSBN ¼ SiO2½ �
B2O3½ � and increasing RSBN, the

hardness values decrease. The decrease is less pronounced for
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Fig. 14. Evolution of hardness values as a function of the Poisson ratio (ν) (indentation at
50 g in ambient conditions).
KSBN ~ 4.5 (i.e. sampleswithmore SiO2). This decrease inHV corresponds
to an increasing residual penetration depth (Pid) as determined from
AFM imaging (see Table 2). As the sodiumcontent increases, the indenter
penetrates deeper into the glass.

3.2.2. Crack resistance
Fig. 7 displays optical images of SBN 14 at different loads. As seen in

thefigure, at low loads (P≤ 25g) cracks donot propagate off the corners
of the Vickers's indenter. The average number of cracks initiating off the
corners of the Vickers' indenter increases between 25 g and 200 g. At
200 g, all four corners have, on average, one crack.

The probability of crack appearance, PC, is the average number of
cracks per corner out of at least 10 indents at a given load. Fig. 8
exemplifies the probability of crack appearance in SBN 14 (dark green
stars) along with the other SBN samples. All SBN glasses, except SBN
12, rapidly increase their crack appearance probability at low loads.
100% PC never occurred for SBN 12 due to limitations of the experimental
setup (i.e. higher loads were not feasible with the hardness tester).

As stated in the previous section the crack resistance, CR, is the load
at which the probability of crack appearance equals 50% (estimated by
looking at when the data in Fig. 8 crosses the 50% line). Table 2 presents
CR for the different SBN samples. SBN 12 is significantly different from
the other glasses.

3.2.3. Indentation fracture toughness, KC
VIF

Section 2.3.6 details the requirements for radial/median cracks (i.e.
c N 1.25d). The formation of radial/median cracks permits the use of
Evans and Marshall's model. On the other hand, to compare the KC

VIF

values in the different glasses, the maximum load needs to be the
same in all glasses. For almost all the samples, reasonable indentation
imprints plus sufficient energy to propagate medial/radial cracks
(CR N 50%) occur at 50 g. The only exception herein is SBN 12, which
neither forms well-developed cracks nor satisfies the criterion
c N 1.25d at 50 g. Hence, Evans and Marshall's model applies well to
all samples but SBN 12. On the other hand, comparing and contrasting
KC
VIF results estimated through different models also lead to discrepan-

cies. Thus, results herein all use the Evans and Marshall's model, but
care should be taken when examining SBN 12 results.

Fig. 9 shows that KC
VIF decreases as the sodium content increases for

constant KSBN. It should be noted that KC
VIF for SBN 12 probably overesti-

mates the correct value due to the lack of well-developed cracks.

3.3. Complementary measurements of Vickers' indentations

Thehigh pressure under the indenter can causematerial compaction
[2–4,7,14]. The original structural configuration can be recovered if suf-
ficient activation energy is supplied to the material (for instance by
heating) as demonstrated by Bridgman and Simon [38] and later by



(a)
(b)

Fig. 15. (a) Evolution of glass packing density (Pf) versus the Poisson's ratio (ν); (b) evolution of the concentration of NBO from NMRmeasurements as a function of ν.
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Mackenzie [15]. Table 2 presents parameters acquired fromAFM images
before (di, Pid, Vi

− and Vi
+) and after (da, Pad, Va

− and Va
+) annealing.

These values are the average values of at least ten indents. VR from
Eq. (8) provides a means to calculate the amount of volume recovered
due to annealing. This indicates the amount of densification due to an
indenter. Table 2 reveals the average VR for the various SBN samples. It
is well noted that annealing may not relieve all regions of densified
material due to geometrical constraints. In KSBN ~ 4.5 the residual stress
field can lead to the development of cracks during unloading [18].
Confirming this hypothesis requires further studies.

Fig. 10 unveils two scenarios depending on the value of KSBN.
For samples with low KSBN values, the recovery volume decreases
roughly linearly with RSBN. ( VR ¼ mKSBN�2:5RSBN þ bKSBN�2:5 where
mKSBN�2:5 ¼ −0:409� 0:005 and bKSBN�2:5 ¼ 0:80� 0:002 ). On the
other hand, the KSBN ~ 4.6 series exhibits a significantly less pronounced
decrease but approximately linearly ( VR ¼ mKSBN�4:6RSBN þ bKSBN�4:6

wheremKSBN�4:5 ¼ −0:0431� 0:003 and bKSBN�4:6 ¼ 0:38� 0:005).
In addition to densification processes, pile-up occurs. The glasses'

pile-up (Vi
+) response depends on the chemistry of the glass. Fig. 11

presents the normalized ratio (Vi
+/Vi

−) of the pile-up as a function of
RSBN. Variations in (Vi

+/Vi
−) convey the glass's tendency to pile-up

around the indenter under pressure [47]. Fig. 11 unveils two different
scenarios depending on the value of KSBN. For KSBN ~ 2.5, the ratio
Fig. 16. Toughness values (KC
VIF) of all SBN glasses as a function of ν. The line (KC

VIF =
mν + b wherem = −4.46 ± 0.27 and b = 1.75 ± 0.06) depicts a liner fit through all of
the data excluding SBN 12.
initially increases and subsequently stabilizes. For KSBN ~ 4.5, the ratio
decreases, and then remains stable within the error bars. There is a
chance that it too increases; however, determining this requires smaller
RSBN values.

Within the pile-up region, there is a chance that densification occurs.
Eq. (9) permits the removal of the densified portion of the pile-up by
imaging before and after annealing. Annealing relieves densified areas
this highlighting variations in isochoric shear flow. Fig. 12 depicts how
VP varies with RSBN for the different series of glasses. For KSBN ~ 2.5, the
ratio increases; yet, for KSBN ~ 4.6, the ratio decreases.

A possible explanation as towhy SBN 55 and SBN 59 decrease is that
annealing may not fully relieve densified regions, and it may also
induced some plastic flow. Confirming this hypothesis requires more
research.

4. Discussion

The experimental observations reported in the previous section can
be qualitatively understood by invokingDell and Bray's scenario [43,45].
SBN glasses with a low concentration of sodium ions (RSBN b Rmax

SBN =
0.5 + KSBN/16) consist predominantly of oxide formers (Si and B
atoms). The small amount of Na+ available in the glass transforms
fully coordinated [3]B into fully coordinated [4]B [43,45]. When
RSBN N Rmax, the extra Na+ begins to form NBOs initially in the Si
network and then in the B network. A side effect to the formation of
the NBOs is the reversal of fully coordinated [4]B units to [3]B units
with at least one NBO. Table 1 confirms the decrease in [4]B units as
[Na2O] increases (or as RSBN increases for constant KSBN).
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versus ν before annealing the sample.
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Fig. 18. (a) The figure depicts the evolution the volume recovery ratio (VR) versus the Poisson's ratio (ν) for SBN data. The blue color line depicts a linear fit to the data for
KSBN ~ 2.5 (VR ¼ mKSBN�2:5ν þ bKSBN�2:5 wheremKSBN�2:5 ¼ −8:3� 0:6andbKSBN�2:5 ¼ 2:26� 0:13). The red color line depicts a linearfit to thedata forKSBN ~ 4.5 (VR ¼ mKSBN�4:5ν þ bKSBN�4:5

wheremKSBN�4:5 ¼ −1:6� 0:3andbKSBN�4:6 ¼ 0:68� 0:07). (b) Thefiguredepicts a comparisonofVRversusν relationships foundherein alongwithpublisheddata, blackdata points [16,18,55].
The blackdashed line depicts the sigmoidfit proposedby Sellappanet al. Thebrownsolidfit depicts the best sigmoidfit, (αR,βR,χR, δR)=(.99, .003, 29,−.007), for the SBNdata assuming2 sudo
points: (0, 1) and (.5, 0).
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4.1. Linking hardness (HV) to the glass structure

The results in Section 3.2.1 reveal a decrease in the hardness of the
SBN glass as RSBN increases (Fig. 6). Linking this variation to the
structure is the key in understanding the glasses' behavior. High levels
of [Na2O] reduce the SBN glasses resistance to Vickers's indentation
and forms NBO on the network formers when RSBN N Rmax. This displays
an inverse correlation between HV and NBO in the glassy network
(Fig. 13).

NBO reduces the connectivity of the glass, which in turn alters the
short- and medium-range order. Poisson's ratio (ν) provides an
interesting insight into the glass's short- and medium-range order.
The Poisson's ratio is the negative of the ratio between the tensile
and lateral strain. The SBN glasses presented herein exhibit a range
of values from 0.21 to 0.27 (Table 1). HV decreases almost linearly
with ν (Fig. 14). When ν is low (i.e. the glass network is reticulate),
HV is high.

As stated above, additional [Na2O] alters both the number of NBOs
and ν. Moreover, the NBOs concentration is linearly linked to ν. It also
affects the packing fraction (Pf) which is a measure of how densely the
system is packed [48,49]. The ratio between the minimal theoretical
density (ρt) and the actual density of the glass (ρ) gives Pf:

P f ¼
ρ
ρt

ð10Þ
(a)

Fig. 19. (a) The figure depicts the evolution of VP versus the ν for SBN data. The purple color line
0:30� 0:022 and bKSBN�2:5 ¼ −0:42� 0:05). For KSBN ~ 4.5, the data does not fit a linear extrapo
with published data [16,18,55]. The black dashed line depicts the sigmoid fit proposed by Sellap
the SBN data herein assuming 2 sudo points: (0, 0) and (.5, 1).
where

ρt ¼
M
V

¼
Xn

i¼1
f iMið ÞXn

i¼1
f iVið Þ : ð11Þ

Here, the sums occur over the different oxides in the systems. fi is the
molar fraction of each oxide. For oxide [AxOy], the ideal volume is [50]:

Vi ¼
4πNA

3
xr3A þ yr3O

� �
ð12Þ

NA is Avogadro number. rA and rO are the ionic radii of the cation and
anion oxides respectively. Fig. 15 reveals Pf increases as ν increases.
For low [Na2O] concentrations and ν, the glass structure has a large frac-
tion of free volume (i.e. low glass packing density). On the other hand,
increasing the [Na2O] concentrations gives higher ν and high Pf; conse-
quently the free volume decreases in these glass structures. Moreover,
HV decreases.

Thus, it appears that the atomic bond strength and the reticulation of
the glassy network control the behavior upon indentation. These results
corroborate Kilymis et al. recent studies on similar glasses. MD simula-
tions on similar glasses reveal that HV decreases as the number of [3]B
and NBOs increases, as observed here [51,52].

HV sheds light on a material's resistance to permanent deformation.
Yet, two glasses with the same HV may exhibit significantly different
overall behaviors upon indentation: resistance to cracking, pile-up,
etc. The subsequent parts of this section address these differences.
(b)

depicts a linear fit to the data for KSBN ~ 2.5 (VP ¼ mKSBN�2:5ν þ bKSBN�2:5 wheremKSBN�2:5 ¼
lation. (b) The figure depicts a comparison of VP versus ν relationships found here in along
pan et al. The beige color fit depicts the best sigmoid fit, (αR, βR,χR)= (.94, 152,−16), for



Fig. 20.Depicts spherical polar coordinates (r, θ,ϕ) used in Yoffe's stress field equations for
a conic indenter [56].

Table 4
Table of predominate openingmode cracks due to a conic indenter and their correspond-
ing stresses [56,18]. Stresses are normalized by the H of a conical indenter.

Type of crack Driving stress field θ Boussinesq term Blister term

Ring σrr/H π/2 0.5 − ν 2 ν−2ð Þβ
π 1þνð Þ 1−2νð Þ tan Ψð Þ

E
H

Radial σϕϕ/H π/2 ν − 0.5 2β
π 1þνð Þ tan Ψð Þ

E
H

Median σθθ/H 0 0.25 − 0.5ν − β
π 1þνð Þ tan Ψð Þ

E
H

Lateral σrr/H 0 −1.5 6β
π 1þνð Þ 1−2νð Þ tan Ψð Þ

E
H
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4.2. Linking the resistance to cracking CR to the glass structure

As observed in Fig. 8, the CR value for SBN 12 is significantly higher
than CR for other SBN glasses. Table 2 provides CR values for the SBN
series. Crack appearance depends on how the glass deforms under the
indenter. Processes occurring during indentation do not favor growth
of median/radial cracks in SBN 12 as observed for other SBN glasses.
Thus, complex processes such as densification and shear flow are
non-negligible for CR estimates. Section 4.4 examines densification and
shear flow processes under the indenter.
4.3. Linking the indentation fracture toughness, KC
VIF, to the glass structure

Over the past several decades, Evans and Marshall's model (Eq. (7))
and other models provided a method to estimate the indentation
fracture toughness of brittle materials (especially ceramics). Yet, these
techniques are essentially linked to the occurrence of a plastic zone
beneath the contact area and isochoric deformation. Figs. 10, 11, and
12 all reveal varying deformation mechanisms in the SBN ternary sys-
tems as the composition changes. This calls for caution in interpreting
indentation cracking patterns. Nevertheless, in the absence of a better
indentation tool to probe the cracking resistance, Evans and Marshall's
model (Eq. (7)) can be used for comparison purposes.

Through Evans andMarshall's model, Vickers's indentation provides
a method to estimate KC

VIF. Fig. 9 reveals a decreasing trend of
KC
VIF with RSBN. Yet, the trend depends on the KSBN series, which implies

that the underline structure of the glass should play an important role.
Conversely, the variations of KC

VIF with ν, plotted in Fig. 16 reveal a fairly
good collapse. A notable exception is SBN 12, which as already men-
tioned in Section 3, does not develop well defined cracks. Densification
under the indenter is a possible source of the discrepancy (to be studied
in Section 4.4). Otherwise, Fig. 16 reveals KC

VIF decreases linearly with ν
(KC

VIF = mν + b wherem = −4.46 ± 0.27 and b = 1.75 ± 0.06).
Table 3
Sellappan et al. [18] proposed these parameters for Yoffe's stress field. B is the strength of
the Blister field; and β is Sellappan's blister field strength. Vi

m is an estimate of the indent
volume disregarding elastic recover fromassumptionsmade by [18]. a is an estimate of the
half diagonal of the projected surface area of an indent, Ψ is the angle of the indenter.

Variable symbol function

Strength of blister field B 3E
4π 1−2vð Þ 1þνð ÞβVi

m

Sellappan's blister field strength β (1 − VR − VP)
Volume of indent disregarding elastic recovery Vi

m 2a3
3 tan Ψð Þ

half the diagonal of the projected surface area a P
2H

� �0:5
apical angle of the indenter Ψ 70.3
4.4. Contribution of densification and shear flow to the permanent
deformation

Beyond HV and KC
VIF, information on the processes occurring during

indentations can be extracted fromanalyzing post-indentation AFM im-
ages. For example a good correlation is found between Vi

+/Vi
− and ν

(Fig. 17). This shows that pile-up processes favor glasses with a lower
degree of polymerization.

Current literature suggests that the chemical composition impacts
more VR thanHV [16,17,53,54]. Sellappan et al. [18] evidenced a sigmoid
relation between ν and VR. As ν increases VR decreases, thus the
contribution of densification occurring in the system decreases.

Fig. 18 unveils two different scenarios when looking at
approximately constant KSBN. For samples with KSBN ~ 2.5, the recovery
volume decreases with ν (VR ¼ mKSBN�2:5ν þ bKSBN�2:5 wheremKSBN�2:5 ¼
�8:3� 0:6 and bKSBN�2:5 ¼ 2:26� 0:13). As the sodium content in-
creases for low KSBN ~ 2.5, VR decreases quickly. On the other hand,
the KSBN ~ 4.5 series exhibits a significantly less pronounced decrease
(VR ¼ mKSBN�4:5ν þ bKSBN�4:5 wheremKSBN�4:5 ¼�1:6� 0:3 andbKSBN�4:6 ¼
0:68� 0:07).

Nevertheless, Sellappan et al. attempted to develop a universal
behavior for VR with ν [18]. Fig. 18 presents the data collected herein,
their data, and their sigmoid fit (dash black line):

VR ¼ 1
αR þ βR exp χRνð Þ þ δR ð13Þ

where (αR, βR, χR, δR) are fitting parameters. The data for the SBN glasses
does fit the spread of data presented in Sellappan et al. [18]. Yet, it has a
tendency to be shifted left (i.e. smaller values of ν) as compared to the
glasses of Sellappan et al. A better fit (solid brown line in Fig. 18) for the
SBN glasses would occur with (αR, βR, χR, δR) = (.99, .003, 29,− .007).

Understanding shear flow requires VP. Sellappan et al. [18]
evidenced a sigmoid increasing trend between ν and VP. Thus the
amount of volume-conserving shear flow increases with ν. Fig. 19
(left) unveils two different scenarios when looking at approximately
constant KSBN. For samples with KSBN ~ 2.5, VP increases with ν (VP ¼
mKSBN�2:5ν þ bKSBN�2:5 wheremKSBN�2:5 ¼ 0:30� 0:022 and bKSBN�2:5 ¼ −
0:42� 0:05). On the other hand, the KSBN ~ 4.5 series exhibits a drastic
decrease in VP with ν. Sellappan et al. attempted to universalize the
behavior of VP as they did with VP [18]. In doing this, they concentrated
on the pile-up. Fig. 19 presents the data collected herein, their data
(black point), and their sigmoid fit (dash black line):

VP ¼ 1
αP þ βP exp χPνð Þ ð14Þ

where (αP, βP, χP) are fitting parameters. The data for the SBN glasses
does fit the spread of data presented in Sellappan et al. [18]. A better
fit for the SBN glasses would occur with (αP, βP, χP) = (.94, 152,−16).

SBN glasses do fit the general spread of data when considering
previously published VP verse ν data. On the other hand, a sigmoid fit
misses the subtleties of the SBN glasses for constant KSBN. Moreover, it
is difficult to understand why the trends of VP are so drastically
different: KSBN ~ 2.5 has a tendency to increase and KSBN ~ 4.5 has a
tendency to decrease. Understanding this requires more research.



(a) (b)

Fig. 21. (a) Estimates for the stress field calculated from equations in Table 3 for E/H = 11.6. Hashed line corresponds to stress during loading. Solid lines correspond to stresses during
unloading. (b) A zoom of x axis of the figure on the left side with only the fully unloaded curves. The figure highlights data points herein that have E/H ratios between 10.3 and 12.8 (sym-
bols remain the same as in Table 1, but the colors correspond to stresses). Three data points herein fit this requirement (SBN 14, SBN 25 and SBN 63). Colors correspond as follows: blue
lines σrr (r = a, θ = 0)/H; red lines σrr (r = a, θ = π/2)/H; green lines σθθ (r = a, θ= 0)/H; and brown lines σϕϕ (r = a, θ = π/2)/H.
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4.5. Residual stresses

Upon indentation, the indenter subjects a small region beneath itself
to elastic/plastic processes [12]. Yet, sufficiently far from the indent, the
material obeys linear elastic dynamics. Assuming a conical indenter for
symmetry purposes and to reduce the problems arising due to edges,
Yoffe estimates the stresses induced during loading and unloading via
Boussinesq and blister fields in spherical polar coordinates (r, θ, ϕ),
see Fig. 20 [56]. The following equations (with Table 3 for parameters)
present Yoffe's stress fields:

σ rr ¼
P

2πr2
1−2ν−2 2−νð Þ cosθ½ � þ 4B

r3
5−νð Þ cos2θ−2þ ν

h i
ð15Þ

σθθ ¼
P 1−2νð Þ cos2θ
2πr2 1þ cosθð Þ−

2B
r3

1−2νð Þ cos2θ ð16Þ

σϕϕ ¼ P 1−2νð Þ
2πr2

cosθ− 1
1þ cosθ

	 

−2B

r3
1−2νð Þ 2−3 cos2θ

� �
ð17Þ

σ rθ ¼
P 1−2νð Þ sinθ cosθ
2πr2 1þ cosθð Þ þ 4B

r3
1þ νð Þ sinθ cosθ ð18Þ

σ rϕ ¼ σθϕ ¼ 0 ð19Þ

B is the strength of the Blister field. P is the applied load of the
indenter. Sellappan et al. proposed a set of parameters for Yoffe's
stresses [18]. Table 4 presents these parameters. Several input
parameters in Sellappan et al. model include: (1) β governs the
Table 5
Comparison of measured and values obtained in [18] (Table 3 and Eqs. (13) and (14)). Negativ

Name Experimental Model from

di
(μm)

Vi
−

(μm3)
VR VP β Vi

−

(μm3)

SBN 12 10.5 36.7 0.528 0.163 0.31 34.54
SBN 25 12.025 54.8 0.308 0.256 0.44 51.88
SBN 30 13 62 0.126 0.286 0.59 65.55
SBN 35 13.6 70.1 0.090 0.324 0.59 75.05
SBN 14 11.25 35.2 0.343 0.113 0.54 42.48
SBN 63 11.95 49.3 0.320 0.256 0.42 50.91
SBN 59 13.1 55.3 0.300 0.163 0.54 67.07
SBN 55 13.625 56.8 0.280 0.158 0.56 75.46
Blister fields strength; (2) Vi
m is an estimate of the indent volume

disregarding elastic recover; (3) a is an estimate of the half diagonal
of the projected surface area of an indent; and (4) Ψ is the angle of
the indenter.

Fig. 21 (a) reveals theoretical stress calculations as presented by
Sellappan et al. [18] for loading (hashed line) and unloading (solid
line) stresses when E/H = 11.6. Sellappan et al. proposed this fit for
E/HV values ranging between 10.3 and 12.8. Three data points herein
fit this requirement (SBN 14, SBN 25 and SBN 63). Fig. 21 (b) depicts
the loading stress for these three data points using experimental results
for Vi−, a, VR, VP, ν, E and HV (Tables 5, 1 and 2). This permits a compar-
ison with Sellappan's model. Stresses for σθθ (r = a, θ = 0)/H and σϕϕ

(r = a, θ = π/2)/H correspond well. However, discrepancies arises
between theoretical values and experimental data for σrr (r = a, θ =
π/2)/H and σrr (r= a, θ=0)/H. The signs of the stresses are consistent,
but the magnitude of calculated experimental values is less than
theoretical values.

Several factors could cause these discrepancies. Table 5 highlights
differences in input parameters of stress equations, which are calculated
from experiments and Sellappan's model. One difference of particular
importance is the leftwards shift in the VR versus ν as seen in Fig. 14.
This implies that the volume recovery in SBN glasses is less than
complex glasses used by Sellappan et al. On the other hand, VP versus
ν fits the spread of the data, yet there are still large differences between
the model and experimental values.

Currently, the model assumes that densification and shear flow
processes are independent of loading. Thus, this could be one source
of uncertainty in themodel.Whatever the values ofVR andVP, the trends
are coherent with [18].
e difference indicates that the model overestimates measured values.

[18] Percent difference

VR VP β Vi
− VR VP β

0.704 0.157 0.14 6% −33% 4% 55%
0.508 0.239 0.25 5% −65% 7% 42%
0.388 0.298 0.31 −6% −208% −4% 47%
0.329 0.333 0.34 −7% −265% −3% 42%
0.686 0.164 0.15 −21% −100% −45% 72%
0.593 0.202 0.20 −3% −85% 21% 52%
0.565 0.214 0.22 −21% −88% −31% 59%
0.415 0.283 0.30 −33% −48% −79% 46%



Fig. 22. Dependence of ν on the transitions from cone/median to median cracks and
from median to lateral radial cracking. Black points represent values from Sellappan's
paper [18].
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Last but not the least, it is not unexpected that calculated stresses
overestimate experimental values. The current expression for theBlister
field (presented in Table 3) does not account for elastic recovery. Hence,
the indentation volume (as estimated from the geometrical volume
with contact at maximum load) is larger than the recovered volume.
This means that both Vi

− and β are overestimated.
Variations in the chemical composition change the morphology of

indentation print, specially the nature and the probability of crack
appearance, as presented in Fig. 4. For example the nature and the
intensity of the residual stresses impact directly median cracks. This is
because they originate from the subsurface and are directly impacted
by the intrinsic deformation [57]. Table 5 reveals variations in densifica-
tion and shear flow processes. These variations lead to variations in the
stress field (Fig. 21) which alters the crack appearance probability for
SBN glasses (Fig. 8). This can explain the drastic variations in the crack
appearance behavior observed from the SBN 12 to SBN 25. Thus, small
variations in the chemical composition lead to a significant change in
the cracking behavior [54].

Fig. 22 presents the data along with the types of cracking predicted
by Sellappan et al. [18]. SBN 12 and SBN 14 require higher forces to ini-
tiate cracks off the corners of the indenter with SBN 12 never reaching
100% PC. Thus a transition in cracking behavior from SBN 12 to the
other glasses (which obtain a PC = 100% at low forces) is feasible.

The SBN 12 presents a singular behavior regarding the SBN series
herein. No cracks are visible after Vickers's indentations at 50 g. Further-
more, increasing the load did not facilitate the development of cracks
popping up from the indentation corners. Complementarymeasurements
of VR and VP highlight the important contribution of the densification pro-
cess during the indentation. This changes the mechanism yielding to the
crack formation: (1) change in the residual stresses resulting from these
processes, and (2) appearance of other types of cracks under indentation
which would limit the propagation of visible cracks.

5. Conclusion

A glass's chemical composition impacts its behavior under a sharp
indenter. Glasses with a higher concentration of network formers
exhibit higher hardness values. The addition of sodium in the composi-
tion (for glasses studied herein) induces NBOs in the silicate/borate
network and changes the coordination of boron. As a consequence, the
indenter penetrates deeper at a given load.

A goodmacroscopic parameter to link the glass structural variations
to its continuum scale properties is ν. Densification processes favor
smaller values of ν, i.e. strongly connected network, whereas shear
flow process becomes predominant as the alkali content increases.
The two processes impact the indentation pattern and the cracking
behavior. Sellappan et al. [18] model provides an estimation of stresses
during loading and unloading. Because shear flow process increases
with sodium concentration, stresses during loading and unloading in-
creasingly favor lateral–radial cracks. As a consequence,KC

VIF is indirectly
proportional to ν.

Acknowledgments

The authors are grateful to T. Bernard for technical assistance. CEA,
AREVA, Triangle de la Physique (RTRA grant IMAFMP) and Ile-de-
France (C'Nano and ISC-PIF grant IMAFMP) have supported this re-
search work.

Appendix A. Table of symbols and their meanings

Table 6
Table of symbols.
Symbol
 Meaning
 Equation
SBN
 Sodium BoroSilicate ([SiO2]–[B2O3]–[Na2O])

NBO
 Non-bridging oxygen atoms

HV
 Material hardness
 5

KC
 Fracture toughness as measured in vacuum

KC
IND
 KC arises from indentation studies.
 6
KC
VIF
 Vickers's indentation fracture toughness
 7
ν
 Poisson's ratio
 3

[∙]
 mol%

RSBN
 Na2O½ �

B2O3½ �, ratio of mol% of [Na2O] to mol% of [B2O3]
Rmax
SBN
 For RSBN b Rmax

SBN, Na+ ions predominantly cause
fully coordinated [3]B to transform into fully
coordinated [4]B. For RSBN N Rmax

SBN, extra Na+ ions
cause fully coordinated [4]B to transform into
[3]B with NBO and it causes NBO in the silica
network.
RSBN
max ¼ 0:5þ KSBN

16
KSBN
 SiO2½ �
B2O3½ �, ratio of mol % of [SiO2] to mol % of [B2O3]
Tg
 Glass transition temperature

E
 Young's modulus
 2

〈CN〉
 Mean coordination number of the boron atoms

[4]B
 The concentration of [4]B per volume unit

deduced from NMR measurements and ICP-AES
results
NNBO
 Number of NBO per volume unit
 4

NNa
 Number of Na+ ions acting as network modifiers

N[4]B
 Each [4]B structural unit has one Na+ ion

attaching to it. Thus, this equates to the number
of Na+ ion acting as a network compensator.
ρ
 Density of sample
 1

ρw
 Density of water

md
 Mass of samples in air at 24 °C

mw
 Mass of samples in water at 24 °C

VL
 longitudinal Velocities

VT
 transverse Velocities

PC
 Crack appearance probability

P
 Indentation load

Pid
 Residual indentation depth

Pad
 Residual indentation depth after annealing

di
 An indentation diagonal length on one indent

(note there are 2 per indent)

da
 An indentation diagonal length on one indent

(note there are 2 per indent) after annealing

d
 The mean of 〈di〉 values obtained for one indent.

Vi
−
 Indentation volume below the free surface
Vi
+
 Indentation volume above the free surface, i.e.

pile-up

Va
−
 Indentation volume below the free surface after

annealing

Va
+
 Indentation volume above the free surface after

annealing, i.e. pile-up

ci
 The crack length measured from the indentation

center.

c
 The average distance (〈ci〉) from the indentation

center to the crack tip
(continued on next page)
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able 6 (continued)
Symbol
 Meaning
 Equation
CR
 Crack resistance: the load where PC exceeds 50%

VR
 Recovered volume ratio
 8

VP
 Volume-conserving shear flow ratio as deter-

mined in the pile-up

9

Pf
 Packing fraction
 10

ρt
 Minimal theoretical density
 11

Vi
 Ideal volume for an oxide
 12

NA
 Avogadro number

rA
 Ionic radii of the cation in the oxide [AxOy]

rO
 The ionic radii of anion in the oxides [AxOy]

(αR, βR, χR,
δR)
Fitting parameters for the sigmoid fit of VR for
Eq. (13)
(αP, βP, χP)
 Fitting parameters for the sigmoid fit of VP for
Eq. (14)
σrr, σθθ, σϕϕ,
σrθ, σrϕ, σθϕ
Yoffe's stress field in spherical polar coordinates
 15, 16, 17, 18,
19
B
 Strength of blister field
 Table 3

β
 Sellappan's blister field strength
 Table 3

Vi

m
 Volume of indent disregarding elastic recovery
 Table 3

a
 Half the diagonal of the projected surface area
 Table 3

Ψ
 Apical angle of the indenter
 Table 3
Appendix B. Data used to calculate E and ν

Table 7
VL,VT, E, andν calculated for each SBN glass. Average values result from3measurements of
VL and VT during different times of the year. Standard deviations result from these
measurements. Error bars in the figures depict one standard deviation.
Name
 VL (m/s)
 VT (m/s)
 E (GPa)
 ν
SBN 12
 3074±17
 1835±6
 80.1±0.03
 0.208±0.06
SBN 25
 3053±10
 1789±8
 80.3±0.04
 0.238±0.008
SBN 30
 2938±6
 1713±8
 74.7±0.05
 0.255±0.001
SBN 35
 3057±15
 1727±6
 76.7±0.04
 0.264±0.002
SBN 14
 3049±21
 1851±32
 81.8±1.02
 0.210±0.015
SBN 63
 3046±11
 1809±8
 81.9±0.06
 0.226±0.009
SBN 59
 2968±24
 1767±15
 77.2±0.03
 0.230±0.007
SBN 55
 2931±20
 1689±4
 72.8±0.06
 0.251±0.005
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