9 research outputs found

    Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone

    Get PDF
    Ionizing radiation is a mutagen with known negative impacts on individual fitness. However, much less is known about how these individual fitness effects translate into population‐level variation in natural environments that have experienced varying levels of radiation exposure. In this study, we sampled genotypes of the freshwater crustacean, Daphnia pulex, from the eight inhabited lakes across the Chernobyl Exclusion Zone (CEZ). Each lake has experienced very different levels of chronic radiation exposure since a nuclear power reactor exploded there over thirty years ago. The sampled Daphnia genotypes represent genetic snapshots of current populations and allowed us to examine fitness‐related traits under controlled laboratory conditions at UK background dose rates. We found that whilst there was variation in survival and schedules of reproduction among populations, there was no compelling evidence that this was driven by variation in exposure to radiation. Previous studies have shown that controlled exposure to radiation at dose rates included in the range measured in the current study reduce survival, or fecundity, or both. One limitation of this study is the lack of available sites at high dose rates, and future work could test life history variation in various organisms at other high radiation areas. Our results are nevertheless consistent with the idea that other ecological factors, for example competition, predation or parasitism, are likely to play a much bigger role in driving variation among populations than exposure to the high radiation dose rates found in the CEZ. These findings clearly demonstrate that it is important to examine the potential negative effects of radiation across wild populations that are subject to many and varied selection pressures as a result of complex ecological interactions

    Impact of environmental radiation on the health and reproductive status of fish from Chernobyl

    Get PDF
    © 2018 American Chemical Society. Aquatic organisms at Chernobyl have now been chronically exposed to environmental radiation for three decades. The biological effects of acute exposure to radiation are relatively well documented, but much less is known about the long-term effects of chronic exposure of organisms in their natural environment. Highly exposed fish in freshwater systems at Chernobyl showed morphological changes in their reproductive system in the years after the accident. However, the relatively limited scope of past studies did not allow robust conclusions to be drawn. Moreover, the level of the radiation dose at which significant effects on wildlife occur is still under debate. In the most comprehensive evaluation of the effects of chronic radiation on wild fish populations to date, the present study measures specific activities of 137Cs, 90Sr, and transuranium elements (238Pu, 239,240Pu, and 241Am), index conditions, distribution and size of oocytes, as well as environmental and biological confounding factors in two fish species perch (Perca fluviatilis) and roach (Rutilus rutilus) from seven lakes. In addition, relative species abundance was examined. The results showed that both fish species are, perhaps surprisingly, in good general physiological and reproductive health. Perch, however, appeared to be more sensitive to radiation than roach: in the most contaminated lakes, a delay of the maturation of the gonads and the presence of several undeveloped phenotypes were evident only for perch and not for roach

    Data from: Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone

    No full text
    Ionising radiation is a mutagen with known negative impacts on individual fitness. However, much less is known about how these individual fitness effects translate into population-level variation in natural environments that have experienced varying levels of radiation exposure. In this study, we sampled genotypes of the freshwater crustacean, Daphnia pulex, from the eight inhabited lakes across the Chernobyl Exclusion Zone (CEZ). Each lake has experienced very different levels of chronic radiation exposure since a nuclear power reactor exploded there over thirty years ago. The sampled Daphnia genotypes represent genetic snapshots of current populations and allowed us to examine fitness-related traits under controlled laboratory conditions at UK background dose rates. We found that whilst there was variation in survival and schedules of reproduction among populations, there was no compelling evidence that this was driven by variation in exposure to radiation. Previous studies have shown that controlled exposure to radiation at dose rates included in the range measured in the current study reduce survival, or fecundity, or both. One limitation of this study is the lack of available sites at high dose rates, and future work could test life history variation in various organisms at other high radiation areas. Our results are nevertheless consistent with the idea that other ecological factors, e.g., competition, predation or parasitism, are likely to play a much bigger role in driving variation among populations than exposure to the high radiation dose rates found in the CEZ. These findings clearly demonstrate that it is important to examine the potential negative effects of radiation across wild populations that are subject to many and varied selection pressures as a result of complex ecological interactions

    Responses of DNA Mismatch Repair Proteins to a Stable G-Quadruplex Embedded into a DNA Duplex Structure

    No full text
    DNA mismatch repair (MMR) plays a crucial role in the maintenance of genomic stability. The main MMR protein, MutS, was recently shown to recognize the G-quadruplex (G4) DNA structures, which, along with regulatory functions, have a negative impact on genome integrity. Here, we studied the effect of G4 on the DNA-binding activity of MutS from Rhodobacter sphaeroides (methyl-independent MMR) in comparison with MutS from Escherichia coli (methyl-directed MMR) and evaluated the influence of a G4 on the functioning of other proteins involved in the initial steps of MMR. For this purpose, a new DNA construct was designed containing a biologically relevant intramolecular stable G4 structure flanked by double-stranded regions with the set of DNA sites required for MMR initiation. The secondary structure of this model was examined using NMR spectroscopy, chemical probing, fluorescent indicators, circular dichroism, and UV spectroscopy. The results unambiguously showed that the d(GGGT)4 motif, when embedded in a double-stranded context, adopts a G4 structure of a parallel topology. Despite strong binding affinities of MutS and MutL for a G4, the latter is not recognized by E. coli MMR as a signal for repair, but does not prevent MMR processing when a G4 and G/T mismatch are in close proximity

    Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice

    No full text
    Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15−/− mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15−/− mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15−/− mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15−/− knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15−/− knockout mice a suitable model for mild mitochondriopathies
    corecore