161 research outputs found

    Symmetries and Local Conservation Laws of Variational Schemes for the Surface Plasmon Polaritons

    Get PDF
    The relation between symmetries and local conservation laws, known as Noether's theorem, plays an important role in modern theoretical physics. As a discrete analog of the differentiable physical system, a good numerical scheme should admit the discrete local conservation laws and inherent mathematical structures. A class of variational schemes constructed for the hydrodynamic-electrodynamic model of lossless free-electron gas in a quasi-neutral background shows good properties in secular simulations of surface plasmon polaritons [Q. Chen et al., Phys. Rev. E 99, 023313 (2019)]. We show the discrete local conservation laws admitted by these schemes. Based on the gauge symmetry of the discrete action functional, a discrete charge conservation law is realized locally, which is consistent with the discrete Euler-Lagrange equations obtained from the variational schemes. Based on the discrete Euler-Lagrange equations, discrete local momentum and energy conservation laws are derived directly, which are rigorous in theory. The preservation of the discrete local conservation laws and Lagrangian symplectic structure ensure that the numerical scheme is correct in physics.Comment: 15 page

    Exponential Attractor for the Boussinesq Equation with Strong Damping and Clamped Boundary Condition

    Get PDF
    The paper studies the existence of exponential attractor for the Boussinesq equation with strong damping and clamped boundary condition utt-Δu+Δ2u-Δut-Δg(u)=f(x). The main result is concerned with nonlinearities g(u) with supercritical growth. In that case, we construct a bounded absorbing set with further regularity and obtain quasi-stability estimates. Then the exponential attractor is established in natural energy space V2×H

    Daylength helps temperate deciduous trees to leaf-out at the optimal time

    Get PDF
    Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees

    Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates

    Get PDF
    Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verification of the processes and drivers are thus urgently needed. We conducted a nutrient-addition experiment after a spring-warming experiment in which an ~40-day range of leaf-out (LO) dates was induced in horse chestnut (Aesculus hippocastanum) and beech (Fagus sylvatica) saplings. We found that both increased nutrient supply and advanced LO date significantly affected the timing of LS, but their effects were opposite, as the former delayed and the latter advanced the senescence. The effects of nutrient supply and LO interacted species specifically. In chestnut, the delay of senescence caused by fertilization increased with the delay of LO and was thus stronger for individuals that flushed late in the spring. On the contrary, in beech the delay of senescence caused by fertilization decreased with the delay of LO and was insignificant for individuals with the latest LO. The experimental findings for beech were confirmed with mature trees at a regional scale. The interactive effect between nutrients and LO on senescence may be associated with variable sensitivity to photoperiod, growth sink limitation and/or direct effect of foliar nutrition on the timing of senescence. Our novel results show that the interactive effects of LO and nutrient supply on the timing of LS should be further addressed experimentally in forthcoming studies. It would also be interesting to consider our results in the further development of phenological models used in assessing the effects of climatic change. The differences found in the present study between horse chestnut and beech suggest that the results found for one species cannot necessarily be generalized to other species, so studies with different temperate tree species are called fo

    Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates

    Get PDF
    Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verification of the processes and drivers are thus urgently needed. We conducted a nutrient-addition experiment after a spring-warming experiment in which an ~40-day range of leaf-out (LO) dates was induced in horse chestnut (Aesculus hippocastanum) and beech (Fagus sylvatica) saplings. We found that both increased nutrient supply and advanced LO date significantly affected the timing of LS, but their effects were opposite, as the former delayed and the latter advanced the senescence. The effects of nutrient supply and LO interacted species specifically. In chestnut, the delay of senescence caused by fertilization increased with the delay of LO and was thus stronger for individuals that flushed late in the spring. On the contrary, in beech the delay of senescence caused by fertilization decreased with the delay of LO and was insignificant for individuals with the latest LO. The experimental findings for beech were confirmed with mature trees at a regional scale. The interactive effect between nutrients and LO on senescence may be associated with variable sensitivity to photoperiod, growth sink limitation and/or direct effect of foliar nutrition on the timing of senescence. Our novel results show that the interactive effects of LO and nutrient supply on the timing of LS should be further addressed experimentally in forthcoming studies. It would also be interesting to consider our results in the further development of phenological models used in assessing the effects of climatic change. The differences found in the present study between horse chestnut and beech suggest that the results found for one species cannot necessarily be generalized to other species, so studies with different temperate tree species are called fo

    Ca1_xLixAl1_xSi1+xN3:Eu2+ solid solutions as broadband,color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes

    No full text
    日前,我院解荣军教授及其合作者在半导体照明用稀土掺杂氮化物发光材料研究上取得突破性进展。稀土发光材料是半导体照明技术中最为关键的核心材料之一,决定了半导体照明器件的发光效率、显色指数、色温和可靠性等重要性能。解荣军教授及其合作者在长期研究氮化物发光材料及半导体照明器件的工作基础上,巧妙地通过发光材料的晶体结构局域调控和能带工程设计,研究和开发了具有宽谱发射、光谱可控的高可靠性氮化物固溶体红色发光材料,成功解决了半导体照明技术中的重要科学问题和关键技术难题。该论文的第一作者为中国计量大学光学与电子技术学院的王乐副教授,解荣军和王乐为共同通讯作者,厦门大学为第一通讯单位。合作单位还有日本国立材料研究所、重庆邮电大学和台湾大学。由于文章具有创新性和重要性,被选为当期封面文章。【Abstract】Color rendition, luminous efficacy and reliability are three key technical parameters for white light-emitting diodes (wLEDs) that are dominantly determined by down-conversion phosphors. However, there is usually an inevitable trade-off between color rendition and luminescence efficacy because the spectrum of red phosphor (that is, spectral broadness and position) cannot satisfy them simultaneously. In this work, we report a very promising red phosphor that can minimize the aforementioned trade-off via structure and band-gap engineering, achieved by introducing isostructural LiSi2N3 into CaAlSiN3:Eu2+. The solid solution phosphors show both substantial spectra broadening (88→117 nm) and blueshift (652→642 nm), along with a significant improvement in thermal quenching (only a 6% reduction at 150 °C), which are strongly associated with electronic and crystal structure evolutions. The broadband and robust red phosphor thus enables fabrication of super-high color rendering wLEDs (Ra=95 and R9=96) concurrently with the maintenance of a high-luminous efficacy (101 lm W−1), validating its superiority in high-performance solid state lightings over currently used red phosphors.We are grateful for the financial support from the JSPS KAKENHI (No. 23560811), the National Natural Science Foundation of China (Nos. 51272259, 61575182, 5157223 and 51561135015), the Natural Science Foundation of Zhejiang Province (No. Y16F050012) and the Taiwan Science and Technology Authority (No. ‘MOST’ 104-2113-M-002-012-MY3 and No. 104-2119-M-002-027-MY3)

    Broadband Circularly Polarized Filtering Antennas

    Get PDF
    This paper consists of two parts. The first part presents a review of the recent development in broadband circularly polarized filtering antennas. The second part presents a novel design of broadband integrated filtering antenna based on eighth-mode SIW (EMSIW) resonators for rectenna applications. This work has three main novel contributions. First, by adjusting the external quality factors and coupling coefficients of the resonators in this filtering antenna, optimum input impedance with a complex value can be realized within the filtering antenna. Thus there is no need for an external impedance matching network, which is usually required between the antenna and the rectifying circuits; Second, compared with traditional microstrip resonators, high-Q EMSIW cavities are used to increase antenna gain; third, the coupling gap between the EMSIW resonators also acts as the feeding structure of the radiator. So the feeding structures are all on the middle layer. The ground plane on the back side is a complete structure without any defects. This novel structure design improves front-to-back ratio to enhance the antenna receiving efficiency. To validate this method, two C-band circularly polarized integrated filtering antennas with an input impedance of 50 Ω\Omega and complex impedance are designed, simulated, and fabricated. The measured results show that the operating frequency bandwidth of the proposed antennas is more than 14.5% at C-band with the gain above 8 dBi. The 3-dB axial ratio bandwidth is larger than 8.5% and the front-to-back ratio is higher than 18 dB. Moreover, the proposed antenna with complex impedance is conjugate matched with the input impedance of a specific rectifying circuit at 5.8 GHz and harmonics suppression at the second-harmonic frequency is achieved
    corecore