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Abstract

Interval programming is a commonly used technique in real-world situations.
Its related theories and methods have been widely researched. There are
a variety of approaches for assessing solutions of an interval programming
problem due to the particularity of intervals. It is well-known that different
assessing approaches may produce different optimal solution(s) for the same
interval programming problem, and it is rather difficult to choose from these
assessing approaches for users, especially for those who have little knowledge
about interval arithmetic, which greatly restricts its extensive applications.

In this paper, we develop an ensemble framework for assessing solutions
of interval programming problems. At the start, interval dominance rules
are defined, and their correlations are described via exclusion, inclusion and
equivalence; then, a rule reduction strategy is developed through inspecting
the impact of different rules on the sorting of solutions, and a novel ensemble
dominance relation for interval programming is proposed to evaluate solu-
tions; furthermore, their complexities are analyzed; finally, the experimental
results empirically validate the correctness and effectiveness of the proposed
framework.
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1. Introduction

Mathematical programming is an important discipline in modern math-
ematics, and its theories and methods have permeated into a large number
of research fields, such as social science [41], management science [31] and
engineering technology [3]. In a conventional mathematical programming
model, its coefficients are usually exact. However, most of the models are
inherently uncertain, or although some problems are precise, the uncertainty
of cognition due to the scarcity of data, the inaccuracy of measured data, or
the simplification of models leads to uncertain coefficients [33, 46].

Interval programming is a branch of mathematical programming for han-
dling uncertainty. In a practical application, compared with the probabilis-
tic distribution of a stochastic variable and the possibilistic distribution of
a fuzzy number, the information of an interval, i.e., its midpoint, width,
lower and upper bounds, are relatively easy to get [49]. Furthermore as
Vladik Kreinovich argued, the most appropriate foundation for representing
and processing different types of uncertainty is intervals [25]. As a result,
interval programming has attracted extensive attentions and been applied
into many different fields, such as profit maximization [29], water resources
allocation [16], automobile design [23] and smart grid [28].

During the last three decades, abundant research results about interval
programming theories and methods have been obtained [1, 6, 18, 21, 36, 45].
In numerical optimization, the approaches for solving them can be grouped
into three categories: satisficing approaches, optimizing approaches and min-
imax regret approaches. The satisficing approaches transform an interval
programming model into one or more deterministic model(s) by using order-
ing relations or possibility degrees between intervals, and then solutions of
the original model are evaluated according to the values of the transformed
deterministic objective function(s) [1, 2, 6, 9, 10, 21, 33]. The optimizing
approaches put forward the concepts of weak or strong optimal solutions for
interval linear programming [19, 26, 30, 36] or extend the concept of efficien-
cy used in conventional multi-objective programming to interval environment
[5, 17, 34]. While the minimax regret approaches transform an interval pro-
gramming model into a deterministic one by borrowing the minimax regret
criterion from the decision theory [20, 37].
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Evolutionary algorithms (EAs) are stochastic global optimization ap-
proaches inspired by nature evolution and genetic mechanisms, and have
superior capabilities in handling complicated problems. There exist two
classes of methods to solve interval programming problems by EAs: one
is transforming them into deterministic models which is similar to the above
satisficing approaches, and then employing EAs to tackle the transformed
models [4, 14, 22, 38]; the other is proposing a novel dominance relation by
using an ordering relation or a possibility degree between intervals, and then
adopting EAs to directly handle them [12, 13, 27, 39, 47, 48].

Clearly, the pivotal technique of both numerical and evolutionary opti-
mization is assessing solutions with the help of some particular approaches
except for optimization algorithms. It is easy to understand that different
assessing approaches will derive different interval dominance relations; dif-
ferent dominance relations likely generate different optimal solution sets for
the same interval programming problem even though the same algorithm is
used. So which solution set is favorable is really a key problem for users.
In a word, although interval uncertainty is easily got and expressed, a va-
riety of approaches for assessing solutions are daunting, especially for users
who have little knowledge about interval arithmetic, which will largely re-
strict extensive applications of interval programming. If employing several
approaches to assess solutions of an interval programming problem in a self
assembling framework, the produced optimal solution(s) will not rely on a
single assessing approach. In this way, users will free themselves from choos-
ing an appropriate approach to assess solutions and focus on the optimization
algorithms. So a great deal of optimization algorithms can be conveniently
used to solve interval programming problems, and it will also boost more
applications of interval programming.

Based on the above consideration, we develop an ensemble framework
for assessing solutions of interval programming problems in this paper. The
correlations between approaches for assessing solutions are first investigat-
ed through going into the optimal solution sets of an interval programming
model corresponding to them, and then a method for assembling them is put
forward. The method includes two modules. One is reducing approaches
for assessing solutions, which will be accomplished before optimization and
whose role is reducing an approach set by discerning equivalent approaches
so as to make diverse decisions during optimization, thus enhancing their
ensemble efficiency. The other is integrating approaches, which can be em-
bedded into any optimization algorithm and whose role is comprehensively
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assessing solutions by assembling evaluation results of multiple approaches
during optimization. Some preliminary results of this study were presented
in [40]. In this paper, we expound the methodology and develop the following
new characters:

1) Reviewing the related theories and methods for interval programming.
2) Providing the detailed proof of each proposition.
3) Showing the propositions of ordering relations between intervals, ana-

lyzing the impacts of different approaches for assessing solutions on optimal
solution sets and revealing the proposed ensemble dominance via examples.

4) Adding the detailed descriptions of two other approaches for assessing
solutions.

5) Adding two bi-objective test models and conducting some new exper-
iments to support the empirical conclusions.

The contributions of this study can be summarized as follows: 1) sys-
tematically researching on approaches for assessing solutions of interval pro-
gramming problems. Three relations, which are equivalence, inclusion and
exclusion, are adopted to describe their correlations in detail; in addition, the
three relations are equivalently described on the basis of optimal solution(s)
of any solution set for an interval programming problem to easily discern the
correlation between approaches; 2) presenting a reduction strategy for as-
sessing approaches so that the ensemble result will not be affected by several
equivalent approaches and most of users can accept it, thus enhancing the
ensemble efficiency; 3) integrating multiple approaches to assess solutions of
an interval programming problem to avert the trouble in choosing a suitable
approach and produce satisfactory optimal solution(s).

The remainder of this paper is organized as follows. Section 2 formulates
interval programming models and reviews the related work. In Section 3,
approaches for assessing solutions of an interval programming problem are
defined as interval dominance rules for the sake of narrative, and their cor-
relations are elaborated. Section 4 develops a reduction strategy for interval
dominance rules, suggests an ensemble dominance relation and theoretically
analyzes the complexities. The proposed framework was empirically tested
on three groups of experiments in Section 5 to verify its rationality and ef-
fectiveness. Section 6 provide the main conclusions of this paper and put
forwards some new directions for future research.
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2. Related work

2.1. Interval programming models

An interval is defined as a = [aL, aU ], where aL, aU ∈ R and aL ≤ aU ; aL

and aU are the lower and upper bounds of a, respectively. We denote the
midpoint and width of a as m(a) = aL+aU

2
and w(a) = aU − aL, respectively.

When aL = aU , a is degraded into a point. We also denote the set of all
closed intervals on R as I(R).

Without loss of generality, an interval programming model is formulated
as follows.

max f(x, c) = (f1(x, c1), f2(x, c2), · · · , fm(x, cm))
s.t. gj(x, aj) ≤ [bLj , b

U
j ], j = 1, 2, · · · , l,

x ∈ S ⊆ Rn.
(1)

where
-x = (x1, x2, · · · , xn)T is an n-dimensional decision vector;
-S is a decision space of x;
-ci = (ci1, ci2, · · · , cik)T , i = 1, 2, · · · ,m, and aj = (aj1, aj2, · · · , ajk)T , j =

1, 2, · · · , l, are interval vector coefficients; cip =
[
cLip, c

U
ip

]
and ajp =

[
aLjp, a

U
jp

]
,

p = 1, 2, · · · , k are the p-th components of ci and aj, respectively; when all
cip and ajp degrade to points, model (1) is a deterministic one;

-fi(x, ci), i = 1, 2, · · · ,m, is the i-th objective function with interval co-
efficients; when m = 1, model (1) is a single-objective programming model;
when m > 1, model (1) is a multi- objective programming model; each ob-
jective value in model (1) is an interval because of its interval coefficients,

denoted as fi(x, ci)
∆
=[fLi (x, ci), f

U
i (x, ci)], i = 1, 2, · · · ,m. When the objec-

tive function is linear, model (1) is an interval linear programming model;
when the objective function is non-linear, model (1) is an interval non-linear
programming model;

-gj(x, aj) ≤ [bLj , b
U
j ], j = 1, 2, · · · , l are constraints of model (1); when

l = 0, Eq. (1) is an unconstraint programming model.
In this paper, we mainly focus on the following unconstraint interval

programming model:

max f(x, c) = (f1(x, c1), f2(x, c2), · · · , fm(x, cm))
s.t. x ∈ S ⊆ Rn.

(2)
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The solutions of model (2) cannot be evaluated by the ordering relation of
exact value due to its interval objective values. The comparison of intervals
will be elaborated in the following subsection.

2.2. Ordering relations and possibility degrees of intervals

The set of ordered pair of binary relation I(R) × I(R) is termed as an
interval ordering relation on I(R), denoted as IR.

For instance, the next five binary relation are interval ordering relations:

IR1 = {(a, b) | aL ≤ bL and aU ≤ bU};
IR2 = {(a, b) | a IR1 b and a 6= b};
IR3 = {(a, b) | m(a) ≤ m(b) and w(a) ≥ w(b)};
IR4 = {(a, b) | a IR3 b and a 6= b};
IR5 = {(a, b) | aU ≤ bL};

(3)

Ishibuchi and Tanaka utilized ≤LU , <LU ,≤mw and <mw to represent the
above first four relations, respectively [21]. Since IR1 and IR3 are antisym-
metric, reflexive and transitive, they are partial ordering on I(R). IR2, IR4,
and IR5 are non-reflexive and transitive; therefore, they are quasi ordering
on I(R). We take the following example to illustrate the above propositions.

Example 1 Let a = [2, 3], b = [3, 3.5], c = [4, 4.2], d = [3, 3.5], e =
[2.2, 2.4].

1) Both b IR1 d and d IR1 b hold, and also it is clear that b = d, which
means that IR1 is antisymmetric; the same is true for IR3. While for re-
lation IR2, b IR2 d does not hold, which implies that IR2 does not satisfy
antisymmetry; the same is true for IR4 and IR5.

2) It can be followed that a IR1 a, suggesting that IR1 is reflexive; the
same is true for IR3. While for IR2, a IR2 a does not hold, suggesting that
IR2 is non-reflexive; the same is true for IR4 and IR5.

3) It can be followed that a IR1 b and b IR1 c, and also it is clear that
a IR1 c, which implies that IR1 is transitive; the same is true for the other
four relations.

4) Neither a IR1 e nor e IR1 a, holds, which means that a = [2, 3] and
e = [2.2, 2.4] cannot be compared by IR1, the same is true for the other four
relations; as a result, all the five ordering relations are not totally ordering
on I(R). Particularly, more solutions cannot be distinguished by relation IR5

since its condition is very strong.
Suppose that for any a, b ∈ I(R) and ρ : sI(R)×I(R) → R, ρ(a ≥ b) ∈ [0, 1]

holds, then ρ(a ≥ b) is termed as a possibility degree of a greater than b.
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For instance, Xu and Da [42] proposed the following possibility degree:

p(a ≥ b)
∆
= max

{
1−max

(
bU−aL

w(a)+w(b)
, 0
)
, 0
}
. (4)

Gao and Yang [11] reviewed a variety of definitions of possibility degrees,
and summarized the possibility axiom.

2.3. Approaches for assessing solutions of interval programming problems

Han et al. [16] transformed an interval programming model to a deter-
ministic single-objective one through defining the expected objectives and
calculating the weight for each objective. Jiang et al. [23] converted an
interval non-linear model into a deterministic bi-objective one by minimiz-
ing the midpoint and width of the objective value, and then utilized the
weighted approach to transform the bi-objective one into a single-objective
one. Ishibuchi and Tanaka [21] converted the original interval programming
model into a deterministic multi-objective one. In the method proposed by
Chanas and Kuchta [6], the original optimization model was transformed into
a deterministic bi-objective one by using cut set to define an interval order-
ing relation. Based on the worst and the best principle, Allahdadi and Nehi
[1] converted an interval objective function into a convex combination of the
upper and the lower bounds of the objective value, and obtained different
optimal solutions from the best case to the worst.

The above methods adopt numerical optimization methods to tackle the
transformed deterministic model and most of them are for interval linear
programming. Nevertheless, numerical optimization are helpless for interval
nonlinear programming or complicated optimization models, such as non-
differential ones.

Jiang et al. [22] utilized the middle point and width of an interval
to transform an interval nonlinear programming model to a deterministic
multi-objective model. The transformed model is further converted to a
non-constrained single-objective model though a linear combination of ob-
jectives and the penalty function method, and then the non-constrained
model is solved by a genetic algorithm; in our previous work, we [14] also
adopted the middle point and width of an interval to transform an interval
multi-objective optimization problem with hybrid index to a deterministic
multi-objective one, and employed NSGA-II [7] to deal with the transformed
problem; Sahoo et al. [38] built a multi-objective optimization model with
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interval coefficients where objectives are system reliability and cost, trans-
formed the constructed model into a single objective model by a scalarizing
function, and tackled the transformed problem with an improved genetic
algorithm; Bhunia and Samanta [4] firstly defined a variety of ordering re-
lations and metrics of intervals to study the optimal condition for interval
multi-objective programming; then, they utilized the above ordering relations
and metrics to transform an interval multi-objective programming model to
a deterministic single-objective one; finally, they used a hybrid tournament
genetic algorithm to solve the transformed model.

The above methods transform interval programming models to determin-
istic ones and utilize EAs to solve the latter. It is well-understood that, for
the same interval programming, different transforming methods will lead to
different deterministic models. As a result, the optimal solution(s) for these
deterministic models may be different as well. This means different trans-
forming methods will lead to different optimal solution sets for the same
interval programming; therefore, it is greatly difficult for a user to choose
from those solution sets. In addition, some of these transforming methods
introduce some parameters, such as weight for each objective, and efficient
approaches are scare for specifying the values of these parameters.

Furthermore, EAs can directly tackle interval programming problems by
defining interval dominance relations. Limbourg and Aponte [27] defined an
interval Pareto dominance relation through an interval ordering relation; We
[47] evaluated the solutions by presenting a probability dominance relation;
Goh and Tan [12] calculated the probability of a solution dominating an-
other solution and compared different solutions based on the probability; we
[13] ever proposed a Pareto dominance relation based on a possibility degree
of intervals; we [39] further defined the lower limit of a possibility degree,
proposed a dominance relation on the basis of the lower limit and studied
the properties of the corresponding Pareto sets; Karshenas et al. [24] sug-
gested α-degree Pareto dominance to distinguish the solutions of an interval
multi-objective programming problem. Dong et al. [8] presented the scheme
of interval probability dominance to distinguish different solutions. Simi-
larly, different interval dominance relations will generate different optimal
solution(s) for the same interval programming even if the same optimiza-
tion algorithm is used. It can be derived from the above discussion that
for both numerical and evolutionary optimization, their pivotal technique is
the evaluation of solutions except for optimization algorithms. The following
summarizes four approaches for assessing the solutions of model (2).
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The first one adopts relation IR1 in Eq. (3) to transform model (2) into
the following multi-objective model, which maximizes the lower and upper
bounds of the objective value:

max {fL(x, c), fU(x, c)},
s.t. x ∈ S ⊆ Rn,

(5)

where fL(x, c) = (fL1 (x, c1), · · · , fLm(x, cm)), fU(x, c) = (fU1 (x, c1), · · · , fUm
(x, cm)).

On the basis of model (5), we can deduce the following rule to distinguish
solutions of model (2). Let x1 and x2 be solutions of model (2). For model
(5), x1 � x2, where � is conventional Pareto dominance, then x1 is said to
dominate x2; if neither x1 nor x2 dominates each other, x1 and x2 are said
to be non-dominated.

The second one employs relation IR3 to transform model (2) into the fol-
lowing multi-objective model, which maximizes the midpoint of the objective
value and minimizes its width:

max m(f(x, c)),
min w(f(x, c)),
s.t. x ∈ S ⊆ Rn,

(6)

where m(f(x, c)) = (m(f1(x, c1)), · · · ,m(fm(x, cm))), w(f(x, c)) = (w(f1(x,
c1)), · · · , w(fm(x, cm))).

Maximizing the midpoint can enhance the average performance of the
objective(s), and minimizing the width can decrease the sensitivity of the
objective value to the interval coefficients. In the same way, on the basis of
model (6), the dominance rule between solutions of model (2) can be derived.

The third one suggested by Limbourg and Aponte [27] gives the following
interval dominance relation for interval multi-objective models according to
relations IR1 and IR2 of Eq. (3).

If for any i ∈ {1, 2, · · · ,m}, all fi(x2, ci) ≤LU fi(x1, ci) hold, and there
exists at least one q ∈ {1, 2, · · · ,m}, such that fq(x2, cq) <LU fq(x1, cq)
holds, i.e.

x1�IPx2 ⇔
{
∀i ∈ {1, 2, · · · ,m} ,3: fi (x2, ci)≤LUfi (x1, ci) ,
∃q ∈ {1, 2, · · · ,m} ,3: fq (x2, cq)<LUfq (x1, cq) ,

(7)

x1 is said to dominate x2 based on intervals.
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The fourth one presented by us [39] uses the following interval dominance
relation to distinguish solutions of model (2) on the basis of the lower limit
of possibility degree in Eq. (4).

For any objective function fi(x, ci), i = 1, 2, · · · ,m, if fi(x1, ci) dominates
fi(x2, ci) with the possibility degree not less than γ, and there exists at least
one objective function fq(x, cq), such that fq(x1, cq) dominates fq(x2, cq) with
the possibility degree larger than 1/2, where γ is in the range of [1/2, 1], i.e.,

x1�γx2 ⇔
{
∀i ∈ {1, 2, · · · ,m} , p (fi (x1, ci) ≥ fi (x2, ci)) ≥ γ,
∃q ∈ {1, 2, · · · ,m} , p (fq (x1, cq) ≥ fq (x2, cq)) >

1
2
,

(8)

x1 is said to dominate x2 with the possibility degree not less than γ.
It should be noted that the third and the fourth methods can be employed

to tackle interval single-objective programming models as well.

3. Interval Dominance rules and their correlation

Subsection 2.3 reviewed some approaches for assessing solutions of model
(2). Generally speaking, the converted deterministic models usually involve
multiple conflict objectives, and most of relations between intervals derived
from either ordering relations or possibility degrees of intervals are not to-
tal ordering, so we borrow a terminology for multi-objective programming,
i.e. dominance, to depict the relation between solutions of model (2). We
call approaches for assessing solutions of model (2) as rules in the following
definition for the sake of narrative.

Definition 1. All approaches for determining the dominance relations
between solutions of interval programming problems are called interval dom-
inance rules.

It is worth noting that interval dominance relations mentioned in Section
2 means dominance relations between solutions in the context of interval
multi-objective programming, so they are one kind of interval dominance
rules.

All rules fall into two groups. One is firstly transforming model (2) into
a deterministic multi-objective model, and then assessing solutions of model
(2) according to the objective value of the transformed problem, such as the
first and the second methods in Subsection 2.3, denoted as rules R1 and
R2, respectively. The other is giving a dominance relation between solutions
of model (2) by directly utilizing ordering relations or possibility degrees of
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intervals, for example, the third and the fourth methods in Subsection 2.3,
denoted as rules R3 and R4, respectively.

We propose the following definition about relations between interval dom-
inance rules to further inspect their correlation.

Definition 2. Let DR1 and DR2 be two interval dominance rules to
compare the solutions of model (2), and denote the dominance relation cor-
responding to rule DRu as �DRu , u = 1, 2.

1) For two solutions of model (2), x1 and x2, if x1 and x2 have the same
dominance relation corresponding to the rules, i.e. x1 �DR1 x2 ⇔ x1 �DR2

x2, then rules DR1 and DR2 are equivalent;
2) for two solutions of model (2), x1 and x2, if x1 �DR1 x2, then x1 �DR2

x2 holds; not vice versa, i.e., there exist two solutions x3 and x4, such that
when x3 �DR2 x4, x3 does not dominate x4 on the basis of rule DR1; then
rule DR1 includes DR2;

3) If there exist two solutions of model (2), x1 and x2, such that when
x1 �DR1 x2, x1 does not dominate x2 on the basis of rule DR2; at the same
time, there exist two other solutions of model (2), x3 and x4, such that when
x3 �DR2 x4, x3 does not dominate x4 on the basis of rule DR1; then rules
DR1 and DR2 are exclusive.

Definition 2 describes the correlation between rules through equivalence,
inclusion, and exclusion. More specifically, the correlations between interval
dominance rules are from strong to weak w.r.t. the above relations; particu-
larly, when two rules are equivalent, their correlation is the strongest.

We take the following example to show the correlation between rules
defined by Definition 2.

Example 2. For the rules R1, R2, R3 and R4, given in Subsection 2.3,
the following conclusions hold.

1) Rules R1 and R3 are equivalent;
2) rules R1 and R2 are exclusive, so do R2 and R4;
3) when γ = 0.5 in R4, R1 includes R4; when γ > 0.5, rules R1 and R4

are exclusive.
Please see the proof of this example in Appendix A.
It is a bit difficult to determine the relationship between rules by us-

ing Definition 2 as shown from the proof in Appendix A. However, it can
be known from Definition 2 that, for any solution set of model (2), if two
interval dominance rules are equivalent, the non-dominated solution sets cor-
responding to the two rules must be the same; if the two rules is inclusive,
the non-dominated solution sets corresponding to them are inclusive as well;
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if the two rules are exclusive, the non-dominated solution sets corresponding
to them also mutually exclude. Conversely, the correlation between interval
dominance rules can also be inspected via the relationship between non-
dominated solution sets corresponding to them. On the basis of the above
discussion, we give the following equivalent definition of the correlation be-
tween interval dominance rules.

Definition 3. Let DR1 and DR2 be interval dominance rules for compar-
ing solutions of model (2), X be any solution set of model (2), and X∗

1 and
X∗

2 be the non-dominated solution sets of X corresponding to the two rules,
respectively. If X∗

1 = X∗
2 , rules DR1 and DR2 are equivalent. If X∗

1 ⊂ X∗
2 ,

rule DR2 includes DR1; otherwise, rules DR1 and DR2 mutually exclude.
The usage of Definition 2 requests users to be very familiar with various

interval dominance rules and theoretically analyze their intrinsic relation-
ships. It is neither possible nor necessary for most users, for they only utilize
these rules without learning more about their intrinsic qualities. Different
from Definition 2, utilizing Definition 3 to study the correlation between rules
just needs to get non-dominated solution sets corresponding to these rules.
As there are numerous approaches for generating non-dominated solution
sets, Definition 3 is more pragmatic.

It can be followed from Definition 3 that, if there exists a solution set
of model (2), such that non-dominated solution sets corresponding to two
interval dominance rules are unequal; these two rules must be nonequivalent.
Nevertheless, computer cannot check whether non-dominated solution sets
based on two interval dominance rules are equal for any solution set due
to its limit computational capability; therefore, we utilize the law of large
numbers to derive the following proposition to discern the equivalent relation
between interval dominance rules.

Proposition 1. Let DR1 and DR2 be two interval dominance rules for
comparing the solutions of model (2). If non-dominated solution sets corre-
sponding to them for a variety of solution sets of model (2) are equal, the
two rules are equivalent.

Algorithm 1 depicts the pseudocode for discerning the equivalent relation-
ship between interval dominance rules on the basis of Proposition 1. At the
start, a solution set P is randomly created, and the number of non-dominated
solution sets based on two rules being equal is set as 0, as shown in lines 3
and 4; then, non-dominated solution sets, P1 and P2, are produced by the
two rules, as shown in lines 5 to 18, where dominated solutions are removed
from set P , and the rest of solutions forms a non-dominated solution set; fi-
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nally, whether the numbers of solutions consisted in two non-dominated sets
are equal is checked; if they are unequal, the two rules are nonequivalent; if
they are equal, whether two non-dominated sets are equal is further checked;
if yes, the number of non-dominated solution sets being equal is added by
1; otherwise, two rules are nonequivalent. For L randomly created solution
sets, only when non-dominated solution sets corresponding to the two rules
are equal, i.e., the number of non-dominated solution sets being equal is L,
the two rules are equivalent.

The correlation, in particular, the inclusive and exclusive relationship be-
tween interval dominance rules theoretically reveals that different interval
dominance rules will generate different optimal solution(s) for the same in-
terval programming, which means that they are somewhat subjective. When
a user adopts an interval dominance rule to assess solutions of an interval
programming problem, other users may dissatisfy with the final optimal so-
lution(s) and scepticize over its(their) objectivity and rationality. If a variety
of rules or approaches are simultaneously adopted to assess solutions of the
problem, diverse and complemental evaluations for the solutions of the model
can be reached; further, if we assemble these evaluations, which is similar to
group decision making [35, 44], final optimal solution(s) will be accepted by
more users. This means that the users need not struggle with the conver-
sions of interval programming models or the comparison between intervals
so that they can focus on the design of optimization algorithms. In this way,
interval programming can be applied to more real-world situations. In view
of this, the following section will suggest an approach for assembling interval
dominance rules.

4. An Ensemble framework for interval dominance rules

This section focuses on developing an ensemble framework for interval
dominance rules. To this end, it is imperative to answer the following t-
wo questions: one is whether different dominance rules can generate diverse
optimal solution sets; the other is how to assemble these rules. Based on
the above considerations, the framework is divided into two modules. One
is reducing any redundant interval dominance rules to derive a reduced rule
set, which can be accomplished before optimization. The other is assembling
the reduced dominance rules, which can be embedded into any optimization
algorithm and whose role is comprehensively evaluating solutions during op-
timization. The method for reducing the dominance rules is expounded as
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Algorithm 1 discernment of equivalent relationship.

Input: two interval dominance rules
1: Procedure equivalent− relation− discerning (DR1,DR2)
2: t=0;iv=0; % when iv=0, two rules are not equivalent
3: for r=1 to L do
4: randomly create a solution set P ;
5: for s = 1 to 2 do
6: Ps ← P ;
7: for all p∈Ps do
8: for all q∈Ps do
9: if p �DCs q then

10: Ps←Ps\{q}; % q is removed from Pj
11: end if
12: if q �DCs p then
13: Ps←Ps\{p};
14: end if
15: end for
16: end for
17: end for
18: if size(P1)=size(P2) then
19: if P1 = P2 then
20: t = t+ 1;
21: else
22: return iv;
23: end if
24: else
25: return iv;
26: end if
27: end for
28: if t=L then
29: iv=1; % two rules are equivalent
30: end if
31: end procedure
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follows.

4.1. Reducing interval dominance rules

Assume that M interval dominance rules, called a rule set, are employed
to tackle an interval programming model. It should be noted that sometimes
different dominance rules may generate the same optimal solution(s). The
ensemble aims to objectively and comprehensively assess solutions of the
model, and a lot of same assessments will weaken the effect of the other
assessments, which has a negative influence on the fairness of assembling. In
this way, the final optimal solution(s) can only be satisfied by a small number
of users. Therefore, it is prerequisite to remove redundant rule(s) from the
rule set so as to produce diverse assessments.

We will discuss the impact of different relationships between interval dom-
inance rules on the sorting of solutions in order to develop a method to reduce
the rule set.

The first case is multiple rules being equivalent. It can be followed from
Definition 3 that the sorting of any solution set corresponding to them are
totally same, suggesting that their combination is insignificant. Therefore,
just one of them should be remained.

The second case is rule DRv including DRw, v, w ∈ 1, 2, · · · ,M , and
v 6= w. In this case, the non-dominated solution set corresponding to rule
DRv includes that corresponding to DRw, which means that the rank of solu-
tions whose rank is 1 corresponding to DRw is also 1 corresponding to DRv;
however, the ranks of other solutions corresponding to two rules might not be
the same. Additionally, it usually needs to use other indicators to evaluate
solutions with the same rank, and different indicators will produce different
sorting of a solution set. Therefore, the two rules with inclusive relation-
ship will generate different sorting, and the rules with inclusive relationship
should be kept.

The last case is rules being exclusive. Under this situation, they will cer-
tainly generate different non-dominated solution sets and there is no denying
that they will produce different sorting; therefore, exclusive rules are benefi-
cial to enhance the fairness of assembling and should be kept.

In conclusion, the reduction strategy of rules is removing equivalent rules
that have the strongest correlation, and remaining inclusive and exclusive
rules. Based on Algorithm 1, Algorithm 2 depicts the reduction strategy of
interval dominance rules.
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Algorithm 2 Reduction strategy of interval dominance rules.

Input: Rule set DR
1: Procedure rules− reducing(DR)
2: for v=1 to M do
3: for w=1 to M do
4: if equivelant− relation− discerning (DRv,DRw)=1 then
5: Randomly remove one from DR;
6: end if
7: end for
8: end for
9: end procedure

4.2. An ensemble dominance relation

This subsection suggests an ensemble dominance relation to deal with in-
terval programming models on the basis of the reduced rule set in Subsection
4.1. Suppose that there are Q rules in the reduced rule set, denoted as DR1,
DR2, · · · , DRQ, respectively. They can be assembled by firstly comparing
two solutions based on each of them, then integrating the comparison results
on two solutions corresponding to all rules, and finally ordering the solutions
by the integrated comparison. Such an ensemble strategy is called integrat-
ing first and ordering last. Additionally, there is an alternative strategy, such
as sorting first and integrating last, as well as possible others [35, 44]. As a
result, the ensemble of interval dominance rules has rich prospects. However,
it is worth noting that all of the above approaches assemble the assessments
for solutions rather than optimization algorithms.

We put forward an ensemble dominance relation as follows as an example
by applying the integrating first and ordering last strategy.

Definition 4. Let x1 and x2 be solutions of model (2), the indicator
Ih(x1,x2) represents the result by employing the h-th rule to compare x1

and x2, i.e.,

Ih (x1,x2) =


1,x1�DRh

x2,
−1,x2�DRh

x1,
0, others.

(9)

Let us define an ensemble indicator, I(x1,x2), to represent the assembled
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order relationship between x1 and x2 as I(x1,x2)=
Q∑
h=1

ωhIh(x1,x2), where

ωh ≥ 0 and
Q∑
h=1

ωh = 1; when I > 0.5, x is said to ensemble dominate x2,

denoted as x1 �ed x2; when I < 0.5, x2 is said to ensemble dominate x1,
denoted as x2 �ed x1; otherwise, x1 and x2 are ensemble non-dominated.

Note: 1) x2 �DRh
x1 in Eq.(9) means that x2 dominates x1 on the

basis of rule DRh that may be related to an ordering relation or a possibility
degree of intervals, such as Eq.(8), so we use 1,-1 and 0 to represent the
dominance relation between x1 and x2. The possibility degree can certainly
be employed to assess the solutions directly, which will be another novel
ensemble approach.

2)ωh is the weight of the h-th interval dominance rule, which is just like the
weight of an expert in a group decision making and reflects the importance of
a rule in an ensemble dominance relation. When users have little knowledge
about the difference between interval dominance rules, ωh can be set as 1

Q
,

suggesting that the roles of all the rules are the same when using the ensemble
dominance relation to assess the solutions; if users prefer to the h-th rule,
they can assign a higher value to ωh, suggesting that the h-th rule plays an
important role in the assessment of the solutions. Additionally, the other
preference types, such as hesitant fuzzy linguistic preference relations [43],
can also used to assemble the interval dominance rules.

We take the following example to show the usage of Definition 4 and
reveal the impacts of the ensemble dominance relation and the weights on
the optimal solutions.

Example 3 Consider a numerical interval linear programming example
as follows [45]:

max f = [3, 3.5]x1 − [1, 1.2]x2

s.t.[1, 1.1]x1 + [1.6, 1.8]x2 ≤ [11.6, 12]
[3, 4]x1 − [2, 3]x2 ≤ [5, 7]
x1, x2 ≥ 0

(10)

Table 1 lists some solutions of problem (10) and corresponding objective
values.

1) We first investigate the relation between x2 and x3 on the basis R1,
R2 and R4 given in Subsection 2.3. It can be followed that x2 and x3 are
non-dominated on the basis of R1, x2 dominates x3 on the basis of R2, and x2
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Table 1: Some solutions of problem (10) and corresponding objective values

solution x1 x2 x3 x4 x5

value (2,0) (2,1) (3,4) (3,3.5) (4,5)
objective value [6,7] [4.8,6] [4.2,6.5] [4.8,7] [6,9]

and x3 are non-dominated on the basis of R4 when γ = 0.8, which indicates
that different interval dominance rules likely reach different assessments of
solutions.

2) If ωh = 1/3, h = 1, 2, 3 in Eq.(9), I(x2,x3)=1/3. Therefore, x2 and
x3 are ensemble non-dominated according to Definition 4, which means that
the proposed ensemble dominance relation integrates assessments of three
interval dominance rules.Whereas if ω1 = 0.2, ω2 = 0.6 and ω3 = 0.2 in
Eq.(9), I(x2,x3)=0.6. So x2 ensemble dominates x3 according to Definition
4. The setting of weights implies that the user prefers to the second interval
dominance relation; thereby comprehensive assessment will more accord with
the assessment of DR2.

3) For solutions x1 and x5. x5 dominates x1 on the basis of R1 and they
are non-dominated on the basis of R2 and R4. If ωh = 1/3, h = 1, 2, 3 in
Eq.(9), they are ensemble non-dominated. If R3 that is equivalent with R1
is not deleted from the rule set and there are other two interval dominance
rules that are equivalent with R1, x5 also dominates x1 on the basis of R1
and the other two equivalent rules. In this case, if ωh = 1/6, h = 1, · · · , 6
in Eq.(9), there is no doubt that x5 ensemble dominates x1. It is obvious
that the result is determined by multiple equivalent rules, which is unfair
and unfavorable for the ensemble. Therefore, it is quite necessary to reduce
the redundant rules so as to improve the ensemble effectiveness.

4) For the solution set X = {x1,x2,x3,x4,x5}, its optimal solution sets
on the basis of R1, R2 and R4 are {x5}, {x1,x2,x4,x5} and {x1,x5}, respec-
tively, when γ = 0.8 in R4. If we use IR5 in Eq. (3) to compare the objective
values, the optimal solution set will be {x1,x3,x4,x5} since the strong con-
dition of IR5 makes more solutions incomparable. If ωh = 1/3, h = 1, 2, 3
in Eq.(9), the optimal solution set on the basis of the proposed ensemble
dominance relation is {x1,x5}, which indicates that when all the interval
dominance rules have the same importance, the proposed ensemble domi-
nance relation can mirror assessments of most interval dominance rules. If
R1, R2 and R4 correspond to three users, and the corresponding optimal
solution sets are their decision results, the optimal solution set on the basis
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of the proposed ensemble dominance relation is clearly the set of most user-
s’ decision results, suggesting that the proposed ensemble dominance can
achieve optimal solution(s) satisfied by more users. Additionally, it can be
seen that there is usually no unique optimal solution for an interval pro-
gramming problem due to the particularity of interval uncertainty, even for
single-objective interval programming. This means that users should choose
their most favorable one from multiple optimal solutions, which belongs to
the problem of sorting intervals or interval multi-criteria decision making,
and will be our future research topics.

Example 3 shows that the proposed ensemble dominance can be employed
to assess solutions of any interval programming problem no matter whether
the objective function(s) is/are linear or not. So the conclusions of Example
3 hold as well for interval nonlinear programming, which will be demonstrat-
ed in Subsection 5.3 for both interval single-objective and multi-objective
nonlinear programming.

The following proposition can be easily derived from Eq. (9).
Proposition 2. Given that x1 and x2 are solutions of model (2), then

I(x1,x2) + I(x2,x1) = 0.
Proof. It can be followed from Eq. (9) that Ih(x1,x2)+Ih(x2,x1) = 0. So

I(x1,x2) + I(x2,x1)=
Q∑
h=1

ωhIh(x1,x2)+
Q∑
h=1

ωhIh(x2,x1)=
Q∑
h=1

ωh(Ih(x1,x2) +

Ih(x2,x1)) = 0, which completes the proof.
Proposition 2 implies that x1 ensemble dominating x2 and x2 ensemble

dominating x1 cannot simultaneously hold. As a consequence, Definition 4
is rational.

4.3. Complexity of the framework

For two modules of the proposed framework, their complexities will be
discussed in this subsection.

Proposition 3. Assume that there are M interval dominance rules in the
rule set, and L solution sets, each of which involves N solutions, are randomly
created; then the complexity of reducing dominance rules is O(LM2N2).

Proof. The discussion is divided into two steps. The first step discusses
the complexity of checking whether any pair of rules are equivalent; the sec-
ond one investigates the complexity of reducing dominance rules. In the first
step, the worst case is that N solutions are non-dominated corresponding to
the two rules. In this case, the complexity of obtaining two non-dominated
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solution sets is O(2N2), and the two non-dominated solution sets are ab-
solutely equal. The worst case is the above steps are repeated L times.
Therefore, in the worst case, the complexity of Algorithm 1 is O(2LN2). In
the second one, the worst case is that any pair of rules are nonequivalent,
then Algorithm 2 should run C2

M times. To sum up, in the worst case, the
complexity of reducing rules is O(LM2N2).

It can be seen from Proposition 3 that the running time of reducing
rules polynomially increases with the increase of the number of rules and
the number of any solution sets. As the module can be accomplished before
optimization, there is no impact on the optimizer. Additionally, if employing
Definition 2 to discern the relationship between rules, reducing a rule set will
not prolong the optimizer.

Proposition 4. Assume that there are Q rules in the reduced rule set,
and Q ≤M , the complexity of determining the ensemble dominance relation
is O(mQ), where m is the number of objectives of model (2).

Proof. When employing Algorithm 2 to determine the ensemble domi-
nance relation between solutions, the dominance indicators based on Q rules
are firstly calculated respectively; in this case, it is necessary to perform
mQ comparison operators; then the relation is derived by calculating the
ensemble dominance indicator; in this case, it is necessary to perform one
comparison operator. Thereby, the complexity of determining the ensemble
dominance relation is O(mQ).

It can be implied from Proposition 4 that the running time of comparing
two solutions corresponding to the proposed ensemble dominance linearly
increases with the increase of the number of the reduced rules, indicating
that, if utilizing it to tackle an interval programming model, the time for
evaluating the solutions will be long.

A method for assembling interval dominance rules is proposed and illus-
trated in this subsection. The proposed ensemble dominance will be tested
on three groups of experiments in the next section.

5. Experiments

The experiments are divided into three groups to demonstrate the ratio-
nality and effectiveness of the proposed framework. The first one shows the
effectiveness of Algorithm 1 by utilizing it to discern the correlations between
any pair of six previous interval dominance rules; the second one discloses
the intrinsic quality of the proposed ensemble dominance by assembling the
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Table 2: The standard deviations
problems δ

single-objective 0.1| sin (10π
∑

i xi) |
bi-objective (0.1| sin (10π

∑
i xi) |, 0.1| sin (20π

∑
i xi) |)

six rules and surveying the relation between the non-dominated solution set
based on the ensemble dominance relation and those based on the reduced
rules; the third one assesses the performance of the proposed framework by
embedding it into an evolutionary interval multi-objective optimization al-
gorithm and comparing the algorithm with three other ones, each of which
adopt a single interval dominance rule. The implementation environmen-
t is as follows: Pentium(R) Dual-Core CPU, 4G RAM, windows XP and
Matlab R2008a. The EA embedded by the proposed ensemble framework is
IP-MOEA [27], in which the traditional dominance relation and the crowding
distance of NSGA-II [7] are replaced by an interval dominance relation and
the hyper-volume contribution of an individual, respectively.

5.1. Interval test models

Two single-objective test models, i.e., Rosenbrock and Sphere, and four
bi-objective test models, i.e., ZDT1, ZDT2, ZDT4 and ZDT6 [7] are taken
into account in the experiments. The number of decision variables of each
model is 30. The ranges of decision variables of Rosenbrock and Sphere are
[−2.048, 2.048] and [−100, 100], respectively; the range of decision variables
of bi-objective test models is [0, 1].

Since all the above models are minimization problems and their objective
values are exact, the objective values are firstly normalized, and the method
for transforming minimization problems to maximization ones [27] as well as
the standard deviation σ [15] for making them intervals are adopted. The
standard deviations are listed in Table 2. The corresponding interval models
are denoted as RosenbrockI , SphereI , ZDTI1, ZDTI2, ZDTI4 and ZDTI6,
respectively.

5.2. The effectiveness of discerning equivalent relation

For six previous interval dominance rules, the correlations between any
pair of rules are investigated by Algorithm 1 in this group of experiments.
These six interval dominance rules are R1, R2, R3 and R4, in which γ = 0.5,
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Table 3: Correlations between any pair of six interval dominance rules

R1 R2 R3 R4 R5 R6
R1 1 0 1 0 0 0
R2 0 1 0 0 0 0
R3 1 0 1 0 0 0
R4 0 0 0 1 0 0
R5 0 0 0 0 1 0
R6 0 0 0 0 0 1

in Subsection 2.3, and two others presented by us [13, 47], denoted as R5
and R6, respectively. R5 and R6 are described in Appendix B.

A solution set involving 200 solutions is firstly randomly created so as to
discern the correlation between any pair of dominance rules; then, objective
values are calculated by a model, for example ZDTI1; finally, the correlation
between rules is discerned by checking whether their non-dominated solution
sets are equal. The above process is independently run 20 times.

Table 3 reports the correlations between any pair of six interval dominance
rules, where 0 and 1 represent non-equivalence and equivalence, respectively.
It can be followed from Table 3 that any pair of others are nonequivalent
except that R1 and R3 are equivalent. The conclusion about R1, R2, R3
and R4 is coincident with Example 2, which indicates that Algorithm 1
can effectively discern the correlation between interval dominance rules. In
addition, the reduced rule set of the six interval dominance rules, i.e., {R1,
R2, R4, R5, R6}, can be deduced via Table 3.

5.3. Rationality of ensemble dominance

The rationality of the proposed ensemble dominance is inspected in this
group of experiments for the reduced rule set derived in the first one. For
this purpose, a solution set involving 200 solutions is firstly created; then,
the objective values of each test model are calculated, and R1, R2, R4, R5,
R6 as well as their ensemble dominance relation, denoted as ED, are used to
produce the corresponding non-dominated solution sets; finally, the relation-
ships between these non-dominated sets are analyzed. Here, assume that we
have little knowledge about each interval dominance rule, and therefore, all
ωh in Definition 4 are set as 0.2, h = 1, 2, · · · , 5.

For each test model, Table 4 reports the optimal solution(s) of the same
solution set based on different interval dominance rules, where the number
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Table 4: Optimal solution(s) corresponding to five interval dominance rules and their
ensemble dominance relation

RosenbrockI SphereI ZDTI1 ZDTI2 ZDTI4 ZDTI6
R1 58,145, 135 75,80,90, 30,51, 6,117,122 42,98,

177,198 146,167 129,185 131,175
R2 58,186, 44,94, 183 46, 185 59 163

198 135,138
R4 58 75,80,90, 16,56,75 30,51,62 6,12 42,98,

135,146, 129,152, 117,122 131,173,
167 178,185 136 175

R5 198 70,75,80, 16,56,62 30,51,62, 6,12 42,98,
90,135, 129,152 117,122 131,
146,167 178, 185 136 175

R6 58 135 16,56,75 30,51, 62 6,12 42,98,
80,90, 129,152, 117,122 131,173,

146, 167 178,185 136 175
ED 58,198 135 16,56,75 30,51, 62 6,12 42,98,

129,152 117,122 131,175
178,185 136

23



Table 5: Parameter settings

population maximal SBX Polynomia mutation ηc ηm
size generation probability [7] probability [7] [7] [7]
50 100 0.9 1/30 20 20

represents the ordinal number of a solution in the solution set.
It can be derived from Table 4 that the non-dominated solution set based

on the proposed ensemble dominance is neither the union of optimal solu-
tion(s) based on the others nor their intersection, but rather the one com-
posed by optimal solution(s) according to most of the dominance rules, which
mirrors the simple idea of collective intelligence. The proposed ensemble
dominance is thus rational.

5.4. Applications to interval multi-objective test models

R1, R2, R4 and their ensemble dominance relation, in which all ωh, h =
1, 2, 3 in Definition 4 are set as 1/3, are employed to deal with four interval
bi-objective models, i.e., ZDTI1, ZDTI2, ZDTI4 and ZDTI6, in this group
of experiments to evaluate the performance of the proposed ensemble frame-
work. Four rules are incorporated into IP-MOEA [27], i.e., all optimization
algorithms are the same except for dominance relations in non-dominated
sorting. Each algorithm is independently run 20 times, and the means of
these results are calculated.

All algorithms use the same parameter settings, as shown in Table 5.
The following three performance indicators are adopted to evaluate the

performances of different optimizers.
1) The worst hypervolume [27] (H metric, for short). The larger the value

of the worst hypervolume of the final Pareto front is, the closer the final front
to the true Pareto front and the better the distribution of points along the
front are. Both reference points are set as (−1,−1)T .

2) Imprecision [27] (I metric, for short), which mirrors the uncertainty of
the final Pareto front. The smaller the imprecision is, the more exact the
final front and the better the front is.

3) CPU time. The shorter the CPU time of an optimizer is, the higher
its efficiency is.

Figures 1 and 2 plot the curves of the H and I metrics w.r.t. the number
of generations, respectively. It can be seen from the figures that:

24



Figure 1: Curves of H metric w.r.t. number of generations

1) for the same generation, the value of H metric obtained by the proposed
ensemble dominance relation is bigger than those obtained by other rules,
which means that the proposed framework can generate a Pareto front closest
to the true one.

2) for the same generation, the value of I metric obtained by the proposed
ensemble dominance relation is far smaller than those obtained by other rules,
which indicates that the proposed framework can produce a Pareto front with
the least uncertainty.

Table 6 reports the values of three performance indicators obtained by
different dominance rules. The superscript means that the datum with it is
significantly inferior to that obtained by the proposed ensemble dominance
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Figure 2: Curves of I metric w.r.t. number of generations
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Table 6: Values of three performance indicators obtained by different interval dominance
rules

ZDTI1 ZDTI2 ZDTI4 ZDTI6

H
Met-
ric

I
Met-
ric

CPU
time

H
Met-
ric

I
Met-
ric

CPU
time

H
Met-
ric

I
Met-
ric

CPU
time

H
Met-
ric

I
Met-
ric

CPU
time

R1 3.70∗ 2.16∗ 71 3.95 1.64∗ 68 4.03 3.24∗ 70 3.57 3.04∗ 69
R2 3.66∗ 4.82∗ 69 3.81∗ 2.56∗ 77 4.01 2.04∗ 72 3.77 3.24∗ 75
R4 3.63∗ 3.32∗ 71 3.84 2.61∗ 79 3.95∗ 3.15∗ 74 3.62 3.03∗ 73
ED 4.06 0.28 177 4.02 0.95 187 4.07 0.50 182 3.91 1.52 185

relation at the 5% significance level, where the statistic result is obtained by
a statistic software package SPSS V.19.0.

It can be derived that:
1) the values of H metric of the final Pareto front generated by the pro-

posed ensemble dominance are significantly superior to those generated by
other rules only for a handful number of bi-objective programming problems,
indicating that the proposed ensemble dominance relation at least has the
similar performance with a single rule on the convergence; nevertheless, users
do not bother with which interval dominance rule they should utilize;

2) for four bi-objective programming problems, the value of I metric of
the final Pareto front produced by the proposed ensemble dominance is sig-
nificantly less than those generated by other rules, which implies that the
proposed ensemble dominance relation has a competitive performance on
imprecision. The likely reason is that the proposed ensemble dominance im-
plicitly involves uncertainty. The advantage of the proposed ensemble frame-
work on imprecision is beyond expectation, and such an advantage will very
likely trigger the widespread application of the proposed ensemble framework
in interval programming;

3) however, the CPU time of the algorithm embedded by the proposed
framework is double longer than those embedded by a single interval domi-
nance rule, which is coincident with Proposition 4.

The above analysis reveals that the reduction strategy is effective to
discern the equivalent rules, and the optimal solution(s) produced by the
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proposed framework can better satisfy most of users; the competitive per-
formance of the proposed framework on imprecision and without struggling
with which interval dominance rules should be used make it outstanding.

6. Conclusions

Interval programming is a widely used technique in real-world situations;
however, diverse interval dominance rules hinder its extensive applications.

This paper presents an ensemble framework for integrating interval domi-
nance rules through investigating the correlations of interval dominance rules,
developing a strategy to reducing a rule set and assembling the reduced rules.
Its advantage is that it can integrate previous interval dominance rules in a
framework such that even if users have little knowledge about interval arith-
metic, they can use the proposed ensemble dominance to handle their interval
programming models without being bothered by the difficulty how to assess
interval objective values.

The proposed ensemble framework is tested on three groups of experi-
ments. The empirical results validate that the proposed reduction strategy
is effective, and the proposed ensemble dominance relation can generate op-
timal solutions which satisfy most users; furthermore, it has the excellent
performance on reducing imprecision. However, similar to most other en-
semble approaches, the method is unavoidably more time-consuming. As
stated in Subsection 4.2, there are numerous ways to assemble interval dom-
inance rules, and group decision making can also be borrowed to a great
extent. There must exist other economical ensemble ways, which are our
future research topics.

Appendix A. The proof of Example 2

Proof. 1) Given that x1 and x2 are any two solutions of model (2), we
prove that x1 �R1 x2 ⇐⇒ x1 �R3 x2. The necessity is firstly to be proved,
i.e., x1 �R1 x2 =⇒ x1 �R3 x2. It can be followed from x1 �R1 x2 that
fLi (x1, c) ≥ fLi (x2, c), fUi (x1, c) ≥ fUi (x2, c), and at least one greater-than
relation hold, where i = 1, 2, · · · ,m. It can be followed from Eq. (3) that
f(x2, c) ≤LU f(x1, c), and there exists at least one i, such that f(x2, c) <LU

f(x1, c), which implies that x1 �R3 x2. The sufficiency can be proved in the
same way.
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2) It can be concluded from model (5) that R1 adopts the lower and upper
bounds of the objective value to define the relation of solutions. If not-less-
than relation holds for the lower and upper bounds of an interval, the relation
also holds for the midpoint of the interval. Nevertheless, it cannot ensure
that the relation holds for the width of the interval. That is to say, if solution
x1 dominates x2 corresponding to R1, x1 and x2 may be incomparable. On
the contrary, if the objective value associated with solution x1 contains that
associated with solution x2; as long as the midpoint of the objective value
associated with solution x2 is not less than that associated with solution x1,
x2 dominates x1 corresponding to R2; however, x1 and x2 are incomparable
corresponding to R1. Therefore, R1 and R2 mutually excluded. Similarly,
R2 and R4 mutually excluded as well.

3) It can be concluded from model (8) that R4 essentially adopts the
midpoint of the objective value to define the relation of solutions. When
γ = 0.5, it is necessary that the not-less-than relation holds for the midpoint
of an interval. As stated in (2), If not-less-than relation holds for the lower
and upper bounds of an interval, the relation also holds for the midpoint of
the interval. Therefore, if solution x1 dominates x2 corresponding to R1, x1

must dominate x2 corresponding to R4. On the contrary, if the interval of the
objective function associated with solution x1 contains that associated with
solution x2; as long as the midpoint of the objective value associated with
solution x2 is not less than that associated with solution x1, x2 dominates
x1 corresponding to R4; however, x1 and x2 are incomparable corresponding
to R1. Therefore, R1 includes R4.

Nevertheless, when γ > 0.5, if x1 dominates x2 corresponding to R4, the
midpoint of the objective value associated with solution x1 is greater than
that associated with solution x2 in some degree. That is to say, although
not-less-than relation holds for the lower and upper bounds of the interval,
x1 and x2 may be incomparable corresponding to R4. Combined with the
above statement, R1 and R4 mutually excludes under this circumstance.

Appendix B. Descriptions of R5 and R6

We ever proposed the following interval dominance rule in [13]. For t-
wo intervals a = [aL, aR] and b = [bL, bR], their maximal interval is de-
noted as β = [βL, βR], where the upper and lower bounds of β are βU =
max{aL, bL, aU , bU} and βL = max{{aL, bL, aU , bU}\βU}, respectively. A
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possibility degree is defined as follows.

p(a ≥ b)
∆
=

d(b, β)

d(a, β) + d(b, β)
(B.1)

where d(a, β) is the distance between a and β whose expression is as follows:

d(a, β) =

√
(aL − βL)2 + (aU − βU)2

2
(B.2)

For any objective function fi(x, ci), i = 1, 2, · · · ,m, if the possibility
degree of fi(x1, ci) not smaller than fi(x2, ci) is not smaller than that of
fi(x2, ci) not smaller than fi(x1, ci), and there exists at least one objective
function fq(x, cq), such that the possibility degree of fq(x1, cq) not smaller
than fq(x2, cq) is larger than that of fi(x2, ci) not smaller than fi(x1, ci), i.e.,

x1�x2 ⇔


∀i ∈ {1, 2, · · · ,m} ,
p (fi (x1, ci) ≥ fi (x2, ci)) ≥ p (fi (x2, ci) ≥ fi (x1, ci)) ,
∃q ∈ {1, 2, · · · ,m} ,
p (fq (x1, cq) ≥ fq (x2, cq)) > p (fq (x2, cq) ≥ fq (x1, cq)) ,

(B.3)
x1 is said to dominate x2. This interval dominance rule is denoted as D5.

Zhang et al. defined the following possibility degree [47].

p(a ≥ b) =


1, aU ≥ bL

aU−bU
aU−aL + bU−aL

aU−aL ×
(

0.5 b
U−aL
bU−bL + aL−bL

bU−bL

)
, bL < aL < bU < aU

aU−bU
aU−aL + 0.5 bU−bL

aU−aL , a
L ≤ bL ≤ bU ≤ aU

(B.4)

For any objective function fi(x, ci), i = 1, 2, · · · ,m, p(x1,x2) =
m∏
i=1

pi

(fi(x1, c1) ≥ (fi(x2, c2)) is called probability of x1 dominating x2; p(x2,x1)

=
m∏
i=1

(1− pi(fi(x1, c1) ≥ (fi(x2, c2))) is called probability of x1 being dom-

inated by x2; p(x1‖x2) = 1 − p(x1,x2) − p(x2,x1) is called non-dominated
probability. If p(x1,x2) = max{p(x1,x2), p(x2,x1), p(x1‖x2)}, x1 is said to
probabilistic dominate x2. This interval dominance rule is denoted as R6.
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