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The paper studies the existence of exponential attractor for the Boussinesq equation with strong damping and clamped boundary
condition 𝑢

𝑡𝑡
−Δ𝑢+Δ

2
𝑢−Δ𝑢

𝑡
−Δ𝑔(𝑢) = 𝑓(𝑥). The main result is concerned with nonlinearities 𝑔(𝑢)with supercritical growth. In

that case, we construct a bounded absorbing set with further regularity and obtain quasi-stability estimates. Then the exponential
attractor is established in natural energy space 𝑉

2
× 𝐻.

1. Introduction

In this paper, we are concerned with the existence of expo-
nential attractor for the Boussinesq equation with strong
damping and clamped boundary condition

𝑢
𝑡𝑡
− Δ𝑢 + Δ

2
𝑢 − Δ𝑢

𝑡
− Δ𝑔 (𝑢) = 𝑓 (𝑥) in Ω ×R

+
, (1)

where Ω is a bounded domain in R𝑁 with the smooth
boundary 𝜕Ω, on which we consider the clamped boundary
condition

𝑢|
𝜕Ω

= 0,

𝜕𝑢

𝜕]








𝜕Ω

= 0,

(2)

where ] is the unit outward normal on 𝜕Ω, and the initial
condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ,

𝑥 ∈ Ω,

(3)

and the assumptions on 𝑔(𝑢) and 𝑓 will be specified later.
In 1872, Boussinesq [1] established the equation

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
− 𝛼𝑢

𝑥𝑥𝑥𝑥
= 𝛽 (𝑢

2
)
𝑥𝑥

(4)

to describe the longitudinal displacement of the shallowwater
wave. Here 𝑢 and 𝛼, 𝛽 are some constants depending on the
depth of the fluid and characteristic velocity of the water
wave. When 𝛼 < 0, (4) is called “good” Boussinesq equation,
when 𝛼 > 0, (4) is called “bad” Boussinesq equation. There
have been lots of research on the well-posedness, blowup,
and other properties of solutions for both the “good” and the
“bad” Boussinesq equation of type (1) (see [2–14] and refer-
ences therein). While for the investigation on the global
attractor to (1), one can see [15–19] and references therein.

Chueshov and Lasiecka [20, 21] studied the longtime
behavior of solutions to the Kirchhoff-Boussinesq plate equa-
tion

𝑢
𝑡𝑡
+ 𝑘𝑢

𝑡
+ Δ

2
𝑢 = div [𝑓

0
(∇𝑢)] + Δ [𝑓

1
(𝑢)] − 𝑓

2
(𝑢) (5)

with Ω ⊂ R2 and the clamped boundary condition (2). Here
𝑘 > 0 is the damping parameter and the mapping 𝑓

0
: R2

→

R2 and the smooth functions𝑓
1
and 𝑓

2
represent (nonlinear)

feedback forces acting upon the plate, in particular,

𝑓
0
(∇𝑢) = |∇𝑢|

2
∇𝑢,

𝑓
1
(𝑢) = 𝑢

2
+ 𝑢.

(6)

Ignoring both restoring force𝑓
0
(∇𝑢) and feedback force𝑓

2
(𝑢)

and replacing the inertial term 𝑢
𝑡𝑡
by 𝜖𝑢

𝑡𝑡
, with 𝜖 > 0 (the
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relaxation time) sufficiently small, (5) becomes the modified
Cohn-Hilliard equation

𝜖𝑢
𝑡𝑡
+ 𝑢

𝑡
− Δ (−Δ𝑢 + 𝑓 (𝑢)) = 𝑔, (7)

which is proposed by Galenko et al. [22–24] to model rapid
spinodal decomposition in nonequilibrium phase separation
processes. Grasselli et al. [25–27] studied the well-posedness
and the longtime dynamics of (7) in both 2𝐷 and 3𝐷

cases, with hinged boundary condition. They established the
existence of the global and exponential attractor for 𝜖 = 1 in
2𝐷 case, and for 𝜖 > 0 sufficiently small in 3𝐷 case. Taking
𝜖 = 1 in (7) or taking 𝑓

0
(∇𝑢) = ∇𝑢, 𝑓

2
= 0 in (5), and taking

into account the inertial force represented by−Δ𝑢 and replac-
ing the weak damping 𝑢

𝑡
by a strong one −Δ𝑢

𝑡
, (1) arises.

In 1𝐷 case, Dai and Guo [15, 16] studied the “bad”
Boussinesq equation with strong damping

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
+ 2𝑘𝑢

𝑥𝑥𝑡
− 𝛼𝑢

𝑥𝑥𝑥𝑥
= 𝛽 (𝑢

𝑛
)
𝑥𝑥

in R × (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ,

𝑥 ∈ R.

(8)

They got global solution 𝑢 ∈ 𝐶
∞
((0, 𝑇];𝐻

∞
(𝑅)) ∩ 𝐶([0, 𝑇];

𝐻
1
(𝑅))∩𝐶([0, 𝑇];𝐻

−1
(𝑅)) ∀𝑇 > 0, where 𝑘, 𝛼 ∈ R+, 𝛽 ∈ R+,

𝑛 > 2.
For the multidimensional case, Yang [17] proved the IVP

of the Boussinesq equation

𝑢
𝑡𝑡
− Δ𝑢 + 𝜇Δ

2
𝑢 = Δ𝜎 (𝑢) in R

𝑁
× (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ,

𝑥 ∈ 𝑅
𝑁
.

(9)

There existed the global weak solution, where 𝜇 > 0, 𝜎(𝑢) ∈
𝐶(𝑅), |𝜎(𝑠)| ≤ 𝑏|𝑠|

𝑝, 𝑠 ∈ 𝑅, 1 < 𝑝 ≤ (𝑁 + 2)/(𝑁 − 2)
+,

and 0 ≤ 𝜎(𝑠)𝑠 ≤ 𝛽 ∫

𝑠

0
𝜎(𝜏)𝑑𝜏, 𝑠 ∈ R, 𝛽 > 0. Here the growth

exponent �̃� = 𝑁/(𝑁−2) (𝑁 ≥ 3) is called critical.The growth
exponent 𝑝∗

≡ (𝑁 + 2)/(𝑁 − 2)
+ (≥�̃�) is called supercri-

tical. However, there is little research on the the higher global
regularity of a bounded absorbing set, the global attractor
and an exponential attractor in natural energy space for the
dynamical system. We try to solve those problems in this
paper.

Global attractor is a basic concept in the research studies
of the asymptotic behavior of the dissipative system. From the
physical point of view, the global attractor of the dissipative
equation (1) represents the permanent regime that can be
observed when the excitation starts from any point in natural
energy space, and its dimension represents the number of
degrees of freedom of the related turbulent phenomenon
and thus the level of complexity concerning the flow. All
the information concerning the attractor and its dimension

from the qualitative nature to the quantitative nature then
yields valuable information concerning the flows that this
physical system can generate. On the physical and numerical
sides, this dimension gives one an idea of the number of
parameters and the size of the computations needed in
numerical simulations. However, the global attractor may
possess an essential drawback; namely, the rate of attraction
may be arbitrarily slow and it can not be estimated in terms of
physical parameters of the systemunder consideration.While
the exponential attractor overcomes the drawback because
not only it has finite fractal dimension but also its contractive
rate is exponential and measurable in terms of the physical
parameters, the purpose of the present paper is to establish
the existence of an exponential attractor in supercritical case.
Our result (see Theorem 8 below) in this paper extends the
corresponding result in [28].

In comparisonwith the results in [17, 18], the contribution
of the paper lies in that

(1) the exponential attractor is established in natural
energy space 𝐸 in supercritical case. See Theorem 8;

(2) the critical case 𝑝 = �̃� is solved in 𝐸
1
. In the concrete,

when 1 ≤ 𝑝 ≤ �̃�, the global and exponential attractor
in 𝐸

1
is established, and the higher regularity of the

global attractor is obtained. See Theorem 15;
(3) the restriction 𝑁 ≤ 5 is removed in subcritical case.

See Theorem 15.
The plan of the paper is as follows. In Section 2, the global

existence of the weak solutions is discussed by the energy
method and the existence of global attractor is established. In
Section 3, the exponential attractor is established for super-
critical case. In Section 4, global attractor and the exponential
attractor are established for nonsupercritical case.

2. Global Existence of Weak Solutions

For brevity, we use the following abbreviations:

𝐿
𝑝
= 𝐿

𝑝
(Ω) ,

𝐻
𝑘
= 𝐻

𝑘
(Ω) ,

𝐻 = 𝐿
2
,

𝑉
2
= 𝐻

2

0
,

‖⋅‖ = ‖⋅‖
𝐿
2 ,

‖⋅‖
𝑝
= ‖⋅‖

𝐿
𝑝 ,

(10)

with𝑝 ≥ 1, where𝐻𝑘 are the 𝐿2-based Sobolev spaces and𝐻𝑘

0

are the completion of 𝐶∞

0
(Ω) in 𝐻𝑘 for 𝑘 > 0. The notation

(⋅, ⋅) for the𝐻-inner product will also be used for the notation
of duality pairing between dual spaces and 𝐶(⋅ ⋅ ⋅ ) denotes
positive constants depending on the quantities appearing in
the parenthesis.

We define the operator 𝐴 : 𝑉
2
→ 𝑉



2
(the dual space of

𝑉
2
),

(𝐴𝑢, V) = (Δ𝑢, ΔV) for any 𝑢, V ∈ 𝑉
2
. (11)
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Then, the operators 𝐴𝑠 (𝑠 ∈ R) are strictly positive and
the spaces 𝑉

𝑠
= 𝐷(𝐴

𝑠/4
) are Hilbert spaces with the scalar

products and the norms

(𝑢, V)
𝑠
= (𝐴

𝑠/4
𝑢, 𝐴

𝑠/4V) ,

‖𝑢‖
𝑉
𝑠

=






𝐴

𝑠/4
𝑢






,

(12)

respectively. Obviously,

‖𝑢‖
𝑉
2

=






𝐴

1/2
𝑢






= ‖Δ𝑢‖ ,

‖𝑢‖
𝑉
1

=






𝐴

1/4
𝑢






= ‖∇𝑢‖ .

(13)

Rewriting (1) in the operator equation and applying 𝐴
−1/2

to the resulting expression, we get the Cauchy problem
equivalent to problem (1), (2), and (3):

𝐴
−1/2

𝑢
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑢 + 𝑢

𝑡
+ 𝑔 (𝑢) = 𝐴

−1/2
𝑓, (14)

𝑢 (0) = 𝑢
0
,

𝑢
𝑡
(0) = 𝑢

1
.

(15)

For each 𝑠 ∈ R, 𝑉
𝑠
= 𝐷(𝐴

𝑠/4
), we denote the Banach space

𝐸 = 𝑉
2
× 𝐻,

𝐸
1
= 𝑉

1
× 𝐻,

(16)

which is equipped with the usual graph norm,

‖(𝑢, V)‖2
𝐸
= ‖𝑢‖

2

𝑉
2

+ ‖V‖2 . (17)

Theorem 1. Assume that (𝐻
1
) 𝑔 ∈ 𝐶

1
(R),





𝑔 (𝑠)





≤ 𝐾

1
(|𝑠|

𝑝
+ 1) ,






𝑔

(𝑠)






≤ 𝐾

2
(|𝑠|

𝑝−1
+ 1) ,






𝑔

(𝑠

1
) − 𝑔


(𝑠

2
)







≤ 𝐾
3
(




𝑠
1






𝑝−1−𝛾

+




𝑠
2






𝑝−1−𝛾

+ 1)




𝑠
1
− 𝑠

2






𝛾

,

(18)

where
0 < 𝛾 < 𝑝 − 1, 1 < 𝑝 < 2,

𝛾 = 1, 𝑝 ≥ 2,

(19)

where (𝑎)+ = max{0, 𝑎}, 𝐾
𝑖
> 0, 𝑖 = 1, 2, 3, 1 ≤ 𝑝 ≤ 𝑝

∗
≡

(𝑁 + 2)/(𝑁 − 2), and𝑁 ≥ 3.
(𝐻

2
) Consider

lim inf
|𝑠|→+∞

𝐺 (𝑠)

|𝑠|
2
≥ 0,

lim inf
|𝑠|→+∞

𝑠𝑔 (𝑠) − 𝜌𝐺 (𝑠)

|𝑠|
2

≥ 0,

(20)

where 𝐺(𝑠) = ∫

𝑠

0
𝑔(𝜏)𝑑𝜏, 0 < 𝜌 < 2.

(𝐻
3
) (𝑢

0
, 𝑢

1
) ∈ 𝐸, 𝑓 ∈ 𝑉

−1
.

Then problem (14) and (15) admits a unique weak solution
𝑢, with (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

2
×𝐻). More precisely, the solution 𝑢

possesses the following properties:

(i) There exists a small positive constant 𝛿 such that





(𝑢, 𝑢

𝑡
)





2

𝐸
+ ∫

𝑡+1

𝑡





𝑢
𝑡
(𝜏)






2

𝑑𝜏

≤ 𝐶 (




(𝑢

0
, 𝑢

1
)



𝐸
) 𝑒

−𝛿𝑡
+ 𝐶 (





𝑓



𝑉
−1

) , 𝑡 ≥ 0.

(21)

(ii) When 1 ≤ 𝑝 < 𝑝
∗, the solution is Lipschitz continuous

in the weaker space 𝐸 as𝑁 ≤ 5; that is,





(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))






2

𝐸
≤ 𝐶 (𝑅) 𝑒

𝑘𝑡 



(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
,

𝑡 ≥ 0,

(22)

for some 𝑘 > 0, where 𝑧 = 𝑢 − V, 𝑢 and V are, respectively, the
weak solutions of (14) corresponding to initial data (𝑢

0
, 𝑢

1
) and

(V
0
, V

1
).

Remark 2. The formula (20) implies that every 𝜂 > 0; there
exists 𝐶

𝜂
> 0, �̃�

𝜂
> 0 such that

𝐺 (𝑠) + 𝜂 |𝑠|
2
≥ −𝐶

𝜂
,

𝑠𝑔 (𝑠) − 𝜌𝐺 (𝑠) + 𝜂 |𝑠|
2
≥ −�̃�

𝜂
,

(23)

where 𝐺(𝑠) = ∫

𝑠

0
𝑔(𝜏)𝑑𝜏.

Lemma 3 (see [29]). Let 𝑋, 𝐵, and 𝑌 be the Banach spaces,
𝑋 →→ 𝐵 → 𝑌,

𝑊 = {𝑢 ∈ 𝐿
𝑝
(0, 𝑇;𝑋) | 𝑢

𝑡
∈ 𝐿

1
(0, 𝑇; 𝑌)} ,

𝑤𝑖𝑡ℎ 1 ≤ 𝑝 < ∞,

𝑊
1
= {𝑢 ∈ 𝐿

∞
(0, 𝑇;𝑋) | 𝑢

𝑡
∈ 𝐿

𝑟
(0, 𝑇; 𝑌)} ,

𝑤𝑖𝑡ℎ 𝑟 > 1.

(24)

Then,

𝑊 →→ 𝐿
𝑝
(0, 𝑇; 𝐵) ,

𝑊
1
→→ 𝐶 ([0, 𝑇] ; 𝐵) .

(25)

Proof of Theorem 1. We first obtain a priori estimate to the
solutions of problem (14) and (15).

Let V = 𝑢
𝑡
+ 𝜖𝑢 and rewrite (1); we have

𝐴
−1/2

(V
𝑡
− 𝜖V + 𝜖2𝑢) + (𝐼 + 𝐴1/2

) 𝑢 + V − 𝜖𝑢 + 𝑔 (𝑢)

= 𝐴
−1/2

𝑓,

V (0) = 𝑢
1
+ 𝜖𝑢

0
= V

0
.

(26)

Using the multiplier 𝑢
𝑡
in (26), we get

𝑑

𝑑𝑡

𝐻
1
(𝑢, V) + 𝐾

1
(𝑢, V) = 0, 𝑡 > 0, (27)
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where

𝐻
1
(𝑢, 𝑢

𝑡
) =

1

2

(






𝐴

−1/4V






2

+ 𝜖
2 



𝐴

−1/4
𝑢







2

+






𝐴

1/4
𝑢







2

+ (1 − 𝜖) ‖𝑢‖
2
+ 2∫

Ω

𝐺 (𝑢) 𝑑𝑥 − 2 (𝐴
−1/2

𝑓, 𝑢))

≥ 𝐶
1
(






𝐴

−1/4
𝑢
𝑡







2

+






𝐴

−1/4
𝑢







2

+






𝐴

1/4
𝑢







2

+ ‖𝑢‖
2
)

− 𝐶
0
,

𝐾
1
(𝑢, V) − 𝜖𝐻

1
(𝑢, V) ≥ 𝐶 (‖V‖2 +






𝐴

−1/4V






2

+






𝐴

1/4
𝑢







2

) − 𝐶
0
.

(28)

Hence,

𝑑

𝑑𝑡

𝐻
1
(𝑢, V) + 𝜖𝐻

1
(𝑢, V) ≤ −𝐶

0
, 𝑡 ≥ 0. (29)

Applying the Gronwall lemma to (29),






𝐴

1/4
𝑢







2

+






𝐴

−1/4
𝑢
𝑡







2

≤ 𝐶
1
𝑒
−𝛿𝑡

+ 𝐶
0
, (30)

where 𝐶
0
= (‖𝑓‖

𝑉
−1

), 𝐶
1
= (‖(𝑢

0
, 𝑢

1
)‖

𝐸
1

), 𝛿 = 𝜖 ∈ (0, 1).
Using the multiplier 𝐴1/2

𝑢
𝑡
, 𝐴1/2

𝑢 in (26),

1

2

𝑑

𝑑𝑡

(




𝑢
𝑡






2

+






𝐴

1/4
𝑢







2

+






𝐴

1/2
𝑢







2

− 2 (𝑢, 𝑓))

+






𝐴

1/4
𝑢
𝑡







2

+ (𝐴
1/2
𝑢
𝑡
, 𝑔 (𝑢)) = 0, 𝑡 > 0,

(31)

𝑑

𝑑𝑡

(

1

2






𝐴

1/4
𝑢







2

+ (𝑢
𝑡
, 𝑢)) +






𝐴

1/4
𝑢







2

+ (𝐴
1/2
𝑢, 𝑔 (𝑢)) =





𝑢
𝑡






2

+ (𝑢, 𝑓) , 𝑡 > 0,

(32)

(31) + 𝜖(32); we have

𝑑

𝑑𝑡

𝐻
2
(𝑢) + 𝐾

2
(𝑢) = 0, 𝑡 > 0. (33)

Obviously,

𝐻
2
(𝑢) =

1

2

[




𝑢
𝑡






2

+ (1 + 𝜖)






𝐴

1/4
𝑢







2

+






𝐴

1/2
𝑢







2

]

+ 𝜖 (𝑢, 𝑢
𝑡
) − (𝑢, 𝑓)

∽






𝐴

1/4
𝑢







2

+




𝑢
𝑡






2

+






𝐴

1/2
𝑢







2

,

𝐾
2
(𝑢) =






𝐴

1/4
𝑢
𝑡







2

− 𝜖




𝑢
𝑡






2

+ (𝐴
1/4
𝑔 (𝑢) , 𝐴

1/4
𝑢
𝑡
)

+ 𝜖 (






𝐴

1/2
𝑢







2

+ (𝐴
1/2
𝑢, 𝑔 (𝑢)) − (𝑢, 𝑓))

≥ 𝐶 (






𝐴

1/4
𝑢
𝑡







2

+






𝐴

1/2
𝑢







2

) − 𝐶
1
𝑒
−𝛿𝑡

− 𝐶
0
.

(34)

Indeed,






(𝐴

1/4
𝑔 (𝑢) , 𝐴

1/4
𝑢
𝑡
)






≤

1

4






𝐴

1/4
𝑢
𝑡







2

+

𝜀

4






𝐴

1/2
𝑢







2

+ 𝐶,






(𝐴

1/2
𝑢, 𝑔 (𝑢))






≤

1

4






𝐴

1/2
𝑢







2

+ 𝐶,

(35)

where 1 ≤ 𝑝 < 𝑁/(𝑁 − 2)
+, 𝐻𝑠

→ 𝐿
2𝑝; 𝑁/(𝑁 − 2)

+
≤ 𝑝 <

(𝑁 + 2)/(𝑁 − 2)
+, 𝑉

2−𝛿
→ 𝐿

2(𝑝+1), and𝐻1
→ 𝐿

𝑝+1

𝑑

𝑑𝑡

𝐻
2
(𝑢) + 𝛿𝐻

2
(𝑢) + 𝛿






𝐴

1/4
𝑢
𝑡
(𝑡)







2

≤ 𝐶
1
𝑒
−𝛿𝑡

+ 𝐶
0
. (36)

Thus





𝐴

1/2
𝑢







2

+






𝐴

1/4
𝑢







2

+




𝑢
𝑡






2

≤ 𝐶
2
𝑒
−𝛿𝑡

+ 𝐶
0
, 𝑡 > 0. (37)

That is,





(𝑢, 𝑢

𝑡
)



𝐸
+ ∫

𝑡+1

𝑡






𝐴

1/4
𝑢
𝑡
(𝜏)







2

𝑑𝜏 ≤ 𝐶
2
𝑒
−𝛿𝑡

+ 𝐶
0
,

𝑡 > 0.

(38)

It follows from (14) and (38) that

𝑢
𝑡𝑡
= 𝑓 − 𝐴

1/2
𝑢 − 𝐴

1/2
𝑢
𝑡
− 𝐴𝑢 − 𝐴

1/2
𝑔 (𝑢)

∈ 𝐿
∞
(𝑅

+
, 𝑉

−2
) .

(39)

Now, we look for the approximate solutions 𝑢𝑛 of problem
(14) and (15) of the form

𝑢
𝑛
(𝑡) =

𝑛

∑

𝑗=1

𝑇
𝑗𝑛
(𝑡) 𝑤

𝑗
, (40)

where 𝐴𝑤
𝑗
= 𝜆

𝑗
𝑤

𝑗
, 𝑗 = 1, 2, . . . , {𝑤

𝑗
} is an orthonormal

basis in 𝐻, and at the same time an orthogonal one in 𝑉
2
,

and 𝑇
𝑗𝑛
(𝑡) = (𝑢

𝑛
, 𝑤

𝑗
) with

(𝐴
−1/2

𝑢
𝑛

𝑡𝑡
, 𝑤

𝑗
) + ((𝐼 + 𝐴

1/2
) 𝑢

𝑛
, 𝑤

𝑗
)

+ 2𝜂 (𝐴
1/4
𝑢
𝑛

𝑡
, 𝑤

𝑗
) + (𝑢

𝑛

𝑡
, 𝑤

𝑗
) + (𝑔 (𝑢

𝑛
) , 𝑤

𝑗
)

= (𝐴
−1/2

𝑓,𝑤
𝑗
) , 𝑡 > 0, 𝑗 = 1, . . . , 𝑛,

(𝑢
𝑛
(0) , 𝑢

𝑛

𝑡
(0)) = (𝑢

0𝑛
, 𝑢

1𝑛
) → (𝑢

0
, 𝑢

1
) in 𝐸.

(41)

Obviously, the estimate (38) is valid for 𝑢𝑛. So we can
extract a subsequence, still denoted by {𝑢𝑛

}, such that

(𝑢
𝑛
, 𝑢

𝑛

𝑡
) → (𝑢, 𝑢

𝑡
)

weakly∗ in 𝐿
∞

loc (R
+
; 𝐸) ;

𝑢
𝑛

𝑡𝑡
→ 𝑢

𝑡𝑡
weakly∗ in 𝐿

∞

loc (R
+
; 𝑉

−2
) ;

(𝑢
𝑛
(𝑡) , 𝑢

𝑛

𝑡
(𝑡)) ⇀ (𝑢 (𝑡) , 𝑢

𝑡
(𝑡)) for 𝑡 ≥ 0.

(42)
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Applying Lemma 3 to (33), we have
(𝑢

𝑛
, 𝑢

𝑛

𝑡
) → (𝑢, 𝑢

𝑡
) in 𝐶

𝑤
([0, 𝑇] ; 𝐸) . (43)

Indeed, when 1 ≤ 𝑝 ≤ 𝑁/(𝑁−2)
+, we have𝐻1

0
→ 𝐿

2𝑝; hence

∫

𝑡

0






(𝑔 (𝑢

𝑛
) − 𝑔 (𝑢) , 𝑤

𝑗
)






𝑑𝜏

≤ 𝐶∫

𝑡

0

(




𝑢
𝑛
− 𝑢





+






𝐴

1/4
𝑢
𝑛
− 𝐴

1/4
𝑢






) 𝑑𝜏 → 0,

(44)

when𝑁/(𝑁 − 2)
+
< 𝑝 < (𝑁 + 2)/(𝑁 − 2)

+, 𝑉
2−𝛿

→ 𝐿
2(𝑝+1)

and by virtue of the interpolation theorem,

∫

𝑡

0






(𝑔 (𝑢

𝑛
) − 𝑔 (𝑢) , 𝑤

𝑗
)






𝑑𝜏 ≤ 𝐶∫

𝑡

0

(




𝑢
𝑛
− 𝑢






+






𝐴

1/4
(𝑢

𝑛
− 𝑢)







𝜃 




𝐴

1/2
(𝑢

𝑛
− 𝑢)







1−𝜃

)𝑑𝜏

→ 0.

(45)

Letting 𝑛 → ∞ in (41) we see that 𝑢 is a weak solution of
problem (14) and (15), with (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑤
(R+

; 𝐸).
Integrating (31) over (𝑡

0
, 𝑡),

(




𝑢
𝑡
(𝑡)





2

+






𝐴

1/4
𝑢 (𝑡)







2

+






𝐴

1/2
𝑢 (𝑡)







2

)

− (




𝑢
𝑡
(𝑡

0
)





2

+






𝐴

1/4
𝑢 (𝑡

0
)







2

+






𝐴

1/2
𝑢 (𝑡

0
)







2

)

= 2∫

𝑡

𝑡
0

(𝑢, 𝑓) 𝑑𝑡 + 2∫

𝑡

𝑡
0






𝐴

1/4
𝑢
𝑡







2

𝑑𝑡

+ 2∫

𝑡

𝑡
0

(𝐴
1/4
𝑔 (𝑢) , 𝐴

1/4
𝑢
𝑡
) 𝑑𝑡 → 0, as 𝑡 → 𝑡

0
.

(46)

Obviously,




(𝑢, 𝑢

𝑡
) (𝑡)




𝑉
2
×𝐻

−




(𝑢, 𝑢

𝑡
) (𝑡

0
)



𝑉
2
×𝐻

→ 0,

𝑡 → 𝑡
0
;

(47)

we prove that (𝑢, 𝑢
𝑡
) ∈ 𝐶([0, 𝑇], 𝑉

2
× 𝐻), 𝑢

𝑡𝑡
∈ 𝐶([0, 𝑇], 𝑉

−1
)

and (22).
(ii) Now, we show that (𝑢, 𝑢

𝑡
) is Lipschitz continuous in

the weak space 𝐸.
In fact, let 𝑢, V be two solutions of problem (14) and (15)

as shown above corresponding to initial data 𝑢
0
, 𝑢

1
and V

0
, V

1
,

respectively. Then 𝑧 = 𝑢 − V solves

𝐴
−1/2

𝑧
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑧 + 𝑧

𝑡
+ 𝑔 (𝑢) − 𝑔 (V) = 0,

𝑧 (0) = 𝑢
0
− V

0
≡ 𝑧

0
,

𝑧
𝑡
(0) = 𝑢

1
− V

1
≡ 𝑧

1
.

(48)

Using the multiplier 𝐴1/2
𝑧
𝑡
in (48),

𝐻
3
(𝑧, 𝑧

𝑡
) =

1

2

(




𝑧
𝑡






2

+






𝐴

1/4
𝑧







2

+






𝐴

1/2
𝑧







2

)

− (𝐴
1/2
𝑧
𝑡
, 𝑔 (𝑢) − 𝑔 (V))

≤

1

2






𝐴

1/4
𝑧
𝑡







2

+ 𝐶 (𝑅)






𝐴

1/2
𝑧







2

.

(49)

We get

𝑑

𝑑𝑡

𝐻
3
(𝑧, 𝑧

𝑡
) + 𝜅𝐻

3
(𝑧, 𝑧

𝑡
) ≤ 𝐶 (𝑅) ‖𝑧‖

2
,





(𝑧, 𝑧

𝑡
) (𝑡)






2

𝐸
≤ 𝐶 (𝑅, 𝑇)





(𝑧, 𝑧

𝑡
) (0)






2

𝐸
,

0 ≤ 𝑡 ≤ 𝑇, (22)





(𝑧, 𝑧

𝑡
) (𝑡)






2

𝐸

≤ 𝐶 (𝑅) 𝑒
−𝜅𝑡 




(𝑧, 𝑧

𝑡
) (0)






2

𝐸
+ ∫

𝑡

0

𝑒
−𝜅(𝑡−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏,

𝑡 > 0.

(50)

Theorem 1 is proved. Under the assumptions of Theorem 1,
with 1 ≤ 𝑝 < 𝑝

∗,𝑁 ≤ 5, we can define the solution operator
𝑆(𝑡) : 𝐸 → 𝐸,

𝑆 (𝑡) (𝑢
0
, 𝑢

1
) = (𝑢 (𝑡) , 𝑢

𝑡
(𝑡))

for every (𝑢
0
, 𝑢

1
) ∈ 𝐸, 𝑡 ≥ 0,

(51)

where 𝑢 is the weak solution of problem (14) and (15).
Theorem 1 shows that {𝑇(𝑡)} constitutes a semigroup on 𝐸,
which is Lipschitz continuous in 𝐸.

Theorem4 (existence of the global attractor). Under the same
assumptions ofTheorem 1, with 1 ≤ 𝑝 < 𝑝

∗, {𝑇(𝑡)} has a global
attractorA in 𝐸 andA ⊂ 𝐾, where 𝐾 is bounded set in 𝐸

𝜎
=

𝑉
𝜎+2

× 𝑉
𝜎
, 0 < 𝜎 < 1.

Proof of Theorem 4. Estimate (38) implies that the ball

𝐵
0
= {(𝑢, V) ∈ 𝐸 | ‖(𝑢, V)‖2

𝐸
≤ 𝐶

0
} (52)

is an absorbing set of the semigroup 𝑆(𝑡) in 𝐸. For every
bound 𝐵 in 𝐸,

dist (𝑆 (𝑡) 𝐵, 𝐵
0
) ≤ 𝐶 (𝐵) 𝑒

−𝛿𝑡
, ∀𝐵 ⊂ 𝐸. (53)

Let : 𝑆(𝑡) = 𝑆
1
(𝑡) + 𝑆

2
(𝑡), where 𝑆

2
(𝑡) : 𝑉

2
× 𝐻 → 𝑉

2
× 𝐻,

𝑆
2
(𝑡)(𝑢

0
, 𝑢

1
) = (𝑢, 𝑢

𝑡
) and

𝐴
−1/2

𝑢
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑢 + 𝑢

𝑡
= 0,

𝑡 > 0, 𝑢 (0) = 𝑢
0
, 𝑢

𝑡
(0) = 𝑢

1
.

(54)

It is easy to get





𝑆
2
(𝑡)



L(𝐸)

≤ 𝐶𝑒
−𝛿𝑡
. (55)

𝑆
1
(𝑡) = 𝑆(𝑡) − 𝑆

2
(𝑡), 𝑆

1
(𝑡) : 𝐸 → 𝐸, 𝑆

1
(𝑡)(𝑢

0
, 𝑢

1
) = (�̂�, �̂�

𝑡
)

solves

𝐴
−1/2

�̂�
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) �̂� + �̂�

𝑡
= 𝐴

−1/2
𝑓 − 𝑔 (𝑢) ,

𝑡 > 0, �̂� (0) = 0, �̂�
𝑡
(0) = 0,

(56)

where 𝑢 ∈ 𝐶
𝑏
(𝑅

+
, 𝑉

2
).
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Let 𝑤 = �̂�
𝑡
,

𝐴
−1/2

𝑤
𝑡𝑡
+ (𝐼 + 𝐴

1/2
)𝑤 + 𝑤

𝑡
= −𝑔


(𝑢) 𝑢

𝑡
,

𝑤 (0) = 0 = 𝑤
0
,

𝑤
𝑡
(0) = 𝑓 − 𝐴

1/2
𝑔 (𝑢

0
) = 𝑤

1
,

(57)

because 𝑓 ∈ 𝑉
𝜎−2

, 𝐴1/2
𝑔(𝑢

0
) ∈ 𝑉

𝜎−2
, 𝑤

1
∈ 𝑉

𝜎−2
, 𝑔

(𝑢)𝑢
𝑡
∈

𝐶
𝑏
(𝑅

+
, 𝑉

𝜎−2
).

Therefore

(�̂�
𝑡
, �̂�

𝑡𝑡
) ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

𝜎
× 𝑉

𝜎−2
) . (58)

We know (𝐼 + 𝐴
1/2
)�̂� = 𝐴

−1/2
𝑓 − 𝑔(𝑢) − 𝐴

−1/2
�̂�
𝑡𝑡
− �̂�

𝑡
∈

𝐶
𝑏
(𝑅

+
, 𝑉

𝜎
), �̂� ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

𝜎+2
) so

(�̂�, �̂�
𝑡
) ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

𝜎+2
× 𝑉

𝜎
) . (59)

Thus ⋃
𝑡≥0,‖(�̂�,�̂�

𝑡
)‖
𝐸𝜎

≤𝑅
(�̂�, �̂�

𝑡
) is bounded in 𝑉

𝜎+2
× 𝑉

𝜎
. 𝑉

𝜎+2
×

𝑉
𝜎
→→ 𝑉

2
× 𝐻,

𝐾 = ⋃

𝑡≥0,‖(�̂�,�̂�
𝑡
)‖
𝐸𝜎

≤𝑅

(�̂�, �̂�
𝑡
)
𝐸

(60)

is compact in 𝐸 = 𝑉
2
× 𝐻. For every bounded set 𝐵 ⊂ 𝐸,

dist {𝑆 (𝑡) 𝐵, 𝐾}

= sup
(𝑢
0
,𝑢
1
)∈𝐵

inf
(�̂�,�̂�
𝑡
)∈𝐾

dist {𝑆 (𝑡) (𝑢
0
, 𝑢

1
) , (�̂�, �̂�

𝑡
)}

≤ sup
(𝑢
0
,𝑢
1
)∈𝐵





(𝑢, 𝑢

𝑡
)



𝐸

→ 0.

(61)

Therefore 𝑆(𝑡) has the global attractorA = 𝜔(𝐵
0
) and

dist {A, 𝐾} = dist {𝑆 (𝑡)A, 𝐾} → 0 𝑡 → ∞; (62)

that isA ⊂ 𝐾. This completes the proof.

3. Exponential Attractor

Definition 5. The set Aexp ⊂ 𝐸 is called an exponential
attractor for the solution semigroup 𝑆(𝑡) of acting on the
energy space 𝐸 if

(i) the set Aexp is a compact set in 𝐸;
(ii) Aexp is forward invariant set; that is, 𝑆(𝑡)A ⊂ A, 𝑡 ≥ 0;
(iii) Aexp attracts exponentially the images of all bounded

set in 𝐸; that is,

dist
𝐸
{𝑆 (𝑡) 𝐵,Aexp} ≤ 𝑄 (‖𝐵‖

𝐸
) 𝑒

−𝛾𝑡
; (63)

for all bounded set 𝐵 ⊂ 𝐸;
(iv) it has finite fractal dimension in 𝐸; that is,

dim
𝑓
{Aexp, 𝐸} < +∞.

FromTheorem 1, estimate (38) implies that the ball

𝐵
𝑅
= {𝜁 ∈ 𝐸 |





𝜁



𝐸

≤ 𝑅} (64)

is an absorbing set of the semigroup 𝑇(𝑡) in 𝐸 for 𝑅 > 𝐶
0
.

Without loss of generality we assume that 𝐵
𝑅
is a forward

invariant set. Let

B
𝑅
= [ ⋃

𝑡≥𝑡
0
+1

𝑇 (𝑡) 𝐵
𝑅
]

𝐸

, (65)

where 𝑡
0
> 0 is chosen such that 𝑇(𝑡)𝐵

𝑅
⊂ 𝐵

𝑅
for 𝑡 ≥ 𝑡

0

and [ ]
𝑋
stands for the closure in space 𝑋. Obviously, the set

B
𝑅
is bounded closed set in 𝐸, 𝑇(𝑡)B

𝑅
⊂ B

𝑅
, 𝑡 ≥ 0, and

it is also an absorbing set of 𝑇(𝑡). B
𝑅
constitutes a complete

metric space (with the 𝐸 norm) and one sees from (22) that
the solution semigroup 𝑇(𝑡) is continuous on B

𝑅
, and the

system (𝑇(𝑡),B
𝑅
) constitutes a dissipative dynamical system.

Lemma 6 (see [19]). Let 𝑋 be a Banach space and 𝑀 a
bounded closed set in𝑋. Assume that themapping𝑉 : 𝑀 → 𝑀

possesses the following properties:

(i) 𝑉 is Lipschitz on𝑀; that is, there exists 𝐿 > 0 such that




𝑉V

1
− 𝑉V

2





≤ 𝐿





V
1
− V

2





, V

1
, V

2
∈ 𝑀; (66)

(ii) there exist compact seminorms 𝑛
1
(𝑥) and 𝑛

2
(𝑥) on 𝑋

such that




𝑉V

1
− 𝑉V

2





≤ 𝜂





V
1
− V

2






+ 𝐾 [𝑛
1
(V

1
− V

2
) + 𝑛

2
(𝑉V

1
− 𝑉V

2
)] ,

(67)

for any V
1
, V

2
∈ 𝑀, where 0 < 𝜂 < 1 and 𝐾 > 0 are constants.

Then for any 𝜅 > 0 and 𝛿 ∈ (0, 1 − 𝜂), there exists a positively
invariant compact set𝐴

𝜅,𝛿
⊂ 𝑀 of finite fractal dimension such

that

dist (𝑉𝑘
𝑀,𝐴

𝜅,𝛿
) ≤ 𝑞

𝑘
, 𝑘 = 1, 2, . . . , (68)

where 𝑞 = 𝜂 + 𝛿 < 1, and

dim
𝑓
𝐴

𝜅,𝛿
≤ (ln 1

𝛿 + 𝜂

)

−1

⋅ (ln𝑚
0
(

2𝐾(1 + 𝐿
2
)

1/2

𝛿

) + 𝜅) ,

(69)

where𝑚
0
(𝑅) is the maximal number of pairs (𝑥

𝑖
, 𝑦

𝑖
) in𝑋 ×𝑋

possessing the properties





𝑥
𝑖






2

+




𝑦
𝑖






2

≤ 𝑅
2
,

𝑛
1
(𝑥

𝑖
− 𝑥

𝑗
) + 𝑛

2
(𝑦

𝑖
− 𝑦

𝑗
) > 1,

𝑖 ̸= 𝑗.

(70)

Lemma 7. Let 𝑋,𝑌 be the metric spaces and let the mapping
ℎ : 𝑋 → 𝑌 be 𝜃-Hölder continuous on the set 𝐵 ⊂ 𝑋. Then

dim
𝑓
{ℎ (𝐵) , 𝑌} ≤

1

𝜃

dim
𝑓
{𝐵, 𝑋} . (71)



Discrete Dynamics in Nature and Society 7

Theorem 8. Let the assumptions of Theorem 1 be in force,
with 1 ≤ 𝑝 < 𝑝

∗. Then the solution semigroup 𝑇(𝑡) has an
exponential attractorA

𝑒𝑥𝑝
in 𝐸.

Proof. Define the operator

𝑉
𝑘
= 𝑆 (𝑘𝑇) : B

𝑅
→ B

𝑅
, 𝑘 ∈ Z

+
. (72)

We show that the discrete system (𝑉
𝑘
,B

𝑅
)has an exponential

attractor.

Definition 9. We introduce the functional space

𝑊(0, 𝑇) = {𝑧 ∈ 𝐿
2
(0, 𝑇; 𝑉

2
) | 𝑧

𝑡

∈ 𝐿
2
(0, 𝑇;𝐻) ,





𝜉
𝑧






2

𝑊
< ∞} ,

(73)

equipped with the norm





𝜉
𝑧






2

𝑊
= ∫

𝑇

0





(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))






2

𝐸
𝑑𝑡 (74)

and the functional space

𝐻
𝑇
= 𝐸 ×𝑊(0, 𝑇) , (75)

equipped with the usual graph norm; that is

‖𝑈‖
2

𝐻
𝑇

=




𝜂





2

𝐸
+




𝜉
𝑧






2

𝑊
, ∀𝑈 = (𝜂, 𝜉

𝑧
) ∈ 𝐻

𝑇
. (76)

Obviously, the spaces𝑊(0, 𝑇) and𝐻
𝑇
are Banach spaces. Let

the set
𝐵

𝑇
= {(𝜉

𝑢
(0) , 𝜉

𝑢
(𝑡) , 𝑡 ∈ [0, 𝑇]) | 𝜉

𝑢
(0) ∈ B

𝑟
, 𝜉

𝑢
(𝑡)

= 𝑆 (𝑡) 𝜉
𝑢
(0)} .

(77)

Define the operator

V : 𝐵
𝑇
→ 𝐻

𝑇
,

V𝑈 = (𝑆 (𝑇) 𝜉
𝑢
(0) , 𝜉

𝑢
(𝑇 + ⋅))

= (𝑆 (𝑇) 𝜉
𝑢
(0) , 𝑆 (𝑡 + 𝑇) 𝜉

𝑢
(0) , 𝑡 ∈ [0, 𝑇]) ,

(78)

where 𝑈 = (𝜉
𝑢
(0), 𝜉

𝑢
(⋅)) ∈ 𝐵

𝑇
and in the following 𝜉

𝑢
(⋅)

means 𝜉
𝑢
(𝑡), 𝑡 ∈ [0, 𝑇].

Lemma 10. The set 𝐵
𝑇
is a bounded closed set in𝐻

𝑇
.

Proof. Obviously, 𝐵
𝑇
is bounded in 𝐻

𝑇
. For any sequence

{𝑈
𝑛
} ⊂ 𝐵

𝑇
,

𝑈
𝑛
= (𝜉

𝑢
𝑛 (0) , 𝜉

𝑢
𝑛 (⋅)) → 𝑈 = (𝜉

𝑢
(0) , 𝜉V (⋅)) in 𝐵

𝑇
. (79)

Since 𝜉
𝑢
𝑛(0) ∈ B

𝑅
andB

𝑅
is closed in 𝐸, 𝜉

𝑢
(0) ∈ B

0
. By the

Lipschitz continuity of 𝑆(𝑡) in 𝐸,




𝜉
𝑢
𝑛 (𝑡) − 𝜉

𝑢
(𝑡)





2

𝐸
=




𝑆 (𝑡) 𝜉

𝑢
𝑛 (0) − 𝑆 (𝑡) 𝜉

𝑢
(0)






2

𝐸

≤ 𝐶 (𝑅, 𝑇)




𝜉
𝑢
𝑛 (0) − 𝜉

𝑢
(0)






2

𝐸

→ 0,

(80)

so by the uniqueness of the limit; 𝜉V(⋅) = 𝜉
𝑢
(𝑡), that is, 𝑈 =

(𝜉
𝑢
(0), 𝜉V(⋅)) ∈ 𝐵𝑇

, where 𝐵
𝑇
is closed in𝐻

𝑇
.

Lemma 10 implies that 𝐵
𝑇
is complete with respect to

the topology of 𝐻
𝑇
, and the dynamical system (V𝑘

, 𝐵
𝑇
)

constitutes a discrete dissipative dynamical system.

Lemma 11. Under the same assumptions of Theorem 1, then
discrete dissipative dynamical system (V𝑘

, 𝐵
𝑇
) has an exponen-

tial attractor A.

Proof. Obviously, V𝐵
𝑇
⊂ 𝐵

𝑇

∀𝑈
1
= (𝜉

𝑢
1
(0) , 𝜉

𝑢
1
(⋅)) ,

𝑈
2
= (𝜉

𝑢
2
(0) , 𝜉

𝑢
2
(⋅)) ,

𝑧 = 𝑢
1
− 𝑢

2
;

(81)

the inequality (93) holds; then integrating (93) over (𝑇, 2𝑇)
we get

∫

2𝑇

𝑇

(‖𝑧 (𝑡)‖
2

𝑉
2

+




𝑧
𝑡
(𝑡)





2

𝐻
) 𝑑𝑡

≤ 𝐶∫

2𝑇

𝑇

𝑒
−𝜅𝑡
𝑑𝑡 (





𝑧
0






2

𝑉
2

+




𝑧
1






2

𝐻
)

+ 𝐶𝑇∫

2𝑇

0

‖𝑧 (𝜏)‖
2
𝑑𝜏.

(82)

Hence,




V𝑈

1
− V𝑈

2






2

𝐻
𝑇

=






𝑆 (𝑇) 𝜉

𝑢
1
(0) − 𝑆 (𝑇) 𝜉

𝑢
2
(0)







2

𝐸
+




𝜉
𝑧
(𝑡 + 𝑇)






2

𝑊

≤ 𝐶𝑒
−𝜅𝑇 




𝜉
𝑢
1
(0) − 𝜉

𝑢
2
(0)







2

𝐸

+ 𝐶∫

𝑇

0

𝑒
−𝜅(𝑇−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏 + ∫

2𝑇

𝑇





𝜉
𝑧
(𝑡)





2

𝐸
𝑑𝑡

≤ 𝜂
𝑇






𝜉
𝑢
1
(0) − 𝜉

𝑢
2
(0)







2

𝐸
+ 𝐾

𝑇
∫

2𝑇

0

‖𝑧 (𝜏)‖
2
𝑑𝜏

≤ 𝜂
𝑇





𝑈

1
− 𝑈

2






2

𝐻
𝑇

+ 𝐾
𝑇
(𝑛

1
(𝑈

1
− 𝑈

2
) + 𝑛

1
(V𝑈

1
− V𝑈

2
)) ,

(83)

where 𝜉
𝑧
(𝑡) = 𝜉

𝑢
1

(𝑡) − 𝜉
𝑢
2

(𝑡),

𝜂
𝑇
= 2𝐶𝑒

−𝜅𝑇
+ 𝐶∫

2𝑇

𝑇

𝑒
−𝜅𝑡
𝑑𝑡, 𝐾

𝑇
= 𝐶 (𝑇 + 2) ,

𝑛
1
(𝑈) = ∫

𝑇

0

‖𝑢 (𝑡)‖
2
𝑑𝑡, 𝑈 = (𝜉

𝑢
(0) , 𝜉

𝑢
(⋅)) ∈ 𝐵

𝑇
.

(84)

It follows from (83) that





V𝑈

1
− V𝑈

2






2

𝐻
𝑇

≤ 𝑎
𝑇





𝑈

1
− 𝑈

2






2

𝐻
𝑇

, (85)

where 𝑎
𝑇

= 𝜂
𝑇
+ 𝐶𝐾

𝑇
∫

2𝑇

0
𝑒
𝜅𝑡
𝑑𝑡. Since 𝑊(0, 𝑇) →→

𝐿
2
(0, 𝑇;𝐻), the seminorm 𝑛

1
(𝑈) is compact in 𝐻

𝑇
. Taking
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𝑇 : 0 < 𝜂
𝑇
< 1 and making use of Lemma 6, we get the

conclusion of Lemma 11. That is, the discrete dynamical sys-
tem (𝑉

𝑘
,𝑀) possesses an exponential attractor 𝐴

𝜅,𝛿
. Define

the project operator

Π : 𝐵
𝑇
→ B

𝑅
,

Π𝑈 = 𝜉
𝑢
(0) ,

𝑈 = (𝜉
𝑢
(0) , 𝜉

𝑢
(⋅)) ∈ 𝐵

𝑇
.

(86)

Lemma 12. 𝐴 = ΠA is an exponential attractor of the discrete
dynamical system (𝑉

𝑘
,B

𝑅
).

Proof. (1)𝐴 is compact because𝐴 is the image of the compact
set A under the continuous mapping Π.

(2) V𝑘
𝐴 ⊂ 𝐴; we have V𝑘A ⊂ A; thus 𝑉𝑘

𝐴 = ΠV𝑘A ⊂

ΠA = 𝐴.
(3) Obviously,

dist
𝐸
{𝑉

𝑘
B

𝑅
, 𝐴} ≤ dist

𝐻
𝑇

{V
𝑘
𝐵

𝑇
,A} ≤ 𝐶𝑞

𝑘
,

0 < 𝑞 < 1;

(87)

for some 0 < 𝑞 < 1 (see Lemma 11).
(4) dim

𝑓
{𝐴, 𝐸} ≤ dim

𝑓
{A, 𝐻

𝑇
} < ∞.

Hence, 𝐴 is a desired exponential attractor. Lemma 12 is
proved.

Let

Aexp = ⋃

0≤𝑡≤𝑆

𝑆 (𝑡) 𝐴. (88)

By the method used in [11], one easily knows that Aexp
is an exponential attractor of (𝑆(𝑡),B

𝑅
), with 𝐸 topology. So

by the definition of the exponential attractor, there exists a
constant 𝜅 > 0, such that

dist
𝐸
{𝑆 (𝑡)B

𝑅
,Aexp} ≤ 𝐶𝑒

−𝜅𝑡
, 𝑡 > 0. (89)

Since the set Aexp ⊂ B
0
is bounded in 𝐸, we claim that Aexp

is an exponential attractor of the system (𝑆(𝑡), 𝐸). Indeed, (i)
obviously, Aexp is forward invariant; (ii) define the project
operator

𝐹 : [0, 𝑇] × 𝐴 → B
𝑅
,

𝐹 (𝑡, 𝜉
𝑢
) = 𝜉

𝑢
(𝑡) , 𝜉

𝑢
(𝑡) ∈ B

𝑅
, 𝑡 ∈ [0, 𝑇] ,





𝐹 (𝑡

1
, 𝜉

𝑢
) − 𝐹 (𝑡

2
, 𝜉

𝑢
)



𝐸

≤ 𝐶(∫

𝑡
2

𝑡
1






𝜉


𝑢
(𝜏)







2

𝐸
𝑑𝜏)

1/2





𝑡
1
− 𝑡

2






1/2

≤ 𝐶




𝑡
2
− 𝑡

1






1/2

,






𝐹 (𝑡, 𝜉

𝑢
1

) − 𝐹 (𝑡, 𝜉
𝑢
2

)





𝐸
1

≤ 𝐶 (𝑅) 𝑒
𝜅𝑇 



𝜉
𝑢
1

− 𝜉
𝑢
2





𝐸

(90)

for any 𝜉
𝑢
, 𝜉

𝑢
1

, 𝜉
𝑢
2

∈ B
𝑅
, 𝑡, 𝑡

1
, 𝑡

2
∈ [0, 𝑇], which imply that

the mapping 𝐹 is 1/2-Hölder continuous. Therefore, Aexp =

𝐹{[0, 𝑇] × 𝐴} (the image of [0, 𝑇] × 𝐴) is compact in 𝐸.

(iii) Consider the following:

dim
𝑓
{Aexp, 𝐸} ≤ 2dim

𝑓
{[0, 𝑆] × 𝐴,R

+
× 𝐸}

≤ 2 (1 + dim
𝑓
{𝐴, 𝐸}) < ∞.

(91)

(iv) For any 𝑡 ∈ R+, there exists a 𝑘 ∈ N+, such that 𝑆(𝑡)B
𝑅
⊂

𝑇(𝑘𝑇)B
𝑅
as 𝑡 ∈ (𝑘𝑇, (𝑘 + 1)𝑇]. On account of 𝐴 = 𝑆(0)𝐴 ⊂

Aexp,

dist
𝐸
{𝑆 (𝑡)B

𝑅
,Aexp} ≤ dist

𝐸
{𝑆 (𝑘𝑇)B

𝑅
, 𝐴}

≤ sup
𝜉
𝑢
∈B
𝑅

inf
𝜉V∈𝐴





𝑆 (𝑡) 𝜉

𝑢
− 𝜉V






1/2

𝐸
≤ 𝐶𝑞

𝑘/2
≤ 𝐶𝑒

−𝜅𝑡/2
.

(92)

Therefore, Theorem 8 is proved.

4. Global and Exponential Attractor in
Nonsupercritical Case

Theorem 13. Let the assumptions of Theorem 1 be in force,
with 1 ≤ 𝑝 ≤ �̃� = 𝑁/(𝑁 − 2)

+. Then problem (14)-
(15) admits a unique weak solution 𝑢, with (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑏
(R+

,

𝐸
1
) ≡ 𝐿

∞
(R+

, 𝐸
1
) ∩ 𝐶(R+

, 𝐸
1
), and the solution is Lipschitz

continuous in 𝐸
1
= 𝑉

1
× 𝐻; that is,





(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))






2

𝐸
1

≤ 𝐶𝑒
𝑘𝑡 



(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
1

, 𝑡 ≥ 0, (93)

for some 𝐶, 𝑘 > 0, where 𝑧 = 𝑢 − V, 𝑢 and V are, respectively,
the weak solutions of (14) corresponding to initial data (𝑢

0
, 𝑢

1
)

and (V
0
, V

1
).

Proof. The existence of the weak solutions can be easily
proved by the same way of Theorem 1. So we only prove (93)
here. Taking𝐻-inner product by 𝑧

𝑡
in (36), we have

1

2

𝑑

𝑑𝑡

(






𝐴

−1/4
𝑧
𝑡







2

+ ‖𝑧‖
2
+






𝐴

1/4
𝑧







2

) +




𝑧
𝑡






2

= − (𝑔 (𝑢) − 𝑔 (V) , 𝑧
𝑡
)

≤ 𝐶 (1 + ‖𝑢‖
𝑝−1

2𝑝
+ ‖V‖𝑝−1

2𝑝
) ‖𝑧‖

2𝑝





𝑧
𝑡






≤

1

2





𝑧
𝑡






2

+ 𝐶






𝐴

1/4
𝑧







2

.

(94)

Applying the Gronwall inequality to (94) we obtain (93).

Remark 14. (i) When 1 ≤ 𝑝 ≤ �̃�, by (93), define the con-
tinuous semigroup

𝑆 (𝑡) : 𝐸
1
→ 𝐸

1
,

𝑆 (𝑡) 𝜑
0
= 𝜑

𝑢
(𝑡) = (𝑢 (𝑡) , 𝑢

𝑡
(𝑡)) ,

(95)

where 𝜑
𝑢
= (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑏
(R+

, 𝐸
1
) as shown inTheorem 13.

(ii) It follows from Theorem 8 and Remark 14 that the
dynamical system (𝑆(𝑡), 𝐸

1
) is dissipative; that is, it has a

bounded absorbing set B
𝑅
. Without loss of generality we

assume that B
𝑅
is positive invariant; that is, 𝑆(𝑡)B

𝑅
⊂ B

𝑅

for 𝑡 ≥ 0.
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Theorem 15. Let the assumptions of Theorem 13 be in force,
especially when 𝑝 = �̃�, 𝑔 ∈ 𝐶2

(R),






𝑔

(𝑠)






≤ 𝐶 (1 + |𝑠|

𝑝−2
) , 𝑠 ∈ R 𝑤𝑖𝑡ℎ 𝑝 ≥ 2. (96)

Then the following conclusions are valid.
(i) The solution semigroup 𝑆(𝑡) possesses in 𝐸

1
a compact

global attractorA, which has finite fractal dimension.
(ii) Any full trajectory ] = {𝜑

𝑢
(𝑡) = (𝑢(𝑡), 𝑢

𝑡
(𝑡)) | 𝑡 ∈ R} ⊂

A possesses the property

(𝑢, 𝑢
𝑡
, 𝑢

𝑡𝑡
) ∈ 𝐿

∞
(R; 𝑉

2
× 𝑉

1
× 𝐻) , (97)

and there exists constant 𝑅 > 0 such that

sup
]⊂A

sup
𝑡∈R

(‖𝑢 (𝑡)‖
2

𝑉
2

+




𝑢
𝑡
(𝑡)





2

𝑉
1

+




𝑢
𝑡𝑡
(𝑡)





2

) ≤ 𝑅
2
. (98)

(iii)The global attractorA consists of full trajectory ] = {𝜑
𝑢
(𝑡) |

𝑡 ∈ R} such that

lim
𝑡→−∞

dist
𝐸
1

{𝜑
𝑢
(𝑡) ,N} = 0,

lim
𝑡→+∞

dist
𝐸
1

{𝜑
𝑢
(𝑡) ,N} = 0,

(99)

whereN is the set of all fixed points of 𝑇(𝑡); that is,

N = {(𝑢, 0) ∈ 𝐸
1
| (𝐼 + 𝐴

1/2
) 𝑢 + 𝑔 (𝑢) = 𝐴

−1/2
𝑓} . (100)

Furthermore, for any 𝜁 ∈ 𝐸
1
,

lim
𝑡→+∞

dist
𝐸
1
{𝑆 (𝑡) 𝜁,N} = 0. (101)

(iv) The semigroup 𝑆(𝑡) has in 𝐸
1
an exponential attractor.

Lemma 16. Let 𝑦 : R+
→ R+ be an absolutely continuous

function satisfying

𝑑

𝑑𝑡

𝑦 (𝑡) + 2𝜖𝑦 (𝑡) ≤ ℎ (𝑡) 𝑦 (𝑡) + 𝑧 (𝑡) , 𝑡 > 0, (102)

where 𝜖 > 0, 𝑧 ∈ 𝐿1

𝑙𝑜𝑐
(R+

),∫𝑡

𝑠
ℎ(𝜏)𝑑𝜏 ≤ 𝜖(𝑡−𝑠)+𝑚 for 𝑡 ≥ 𝑠 ≥ 0

and some𝑚 > 0. Then

𝑦 (𝑡) ≤ 𝑒
𝑚
(𝑦 (0) 𝑒

−𝜖𝑡
+ ∫

𝑡

0

|𝑧 (𝜏)| 𝑒
−𝜖(𝑡−𝜏)

𝑑𝜏) ,

𝑡 > 0.

(103)

Lemma 17 (quasi-stability). Let the assumptions of Theorem
13 be valid and let 𝑢, V be the solutions of problem (14)-(15) with
initial data inB

𝑅
. Then 𝑧 = 𝑢 − V satisfies the relation





(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))






2

𝐸
1

≤ 𝐶




(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐾 sup
0≤𝑠≤𝑡

‖𝑧 (𝑠)‖
2

(104)

for some constants 𝐶,𝐾 > 0.

Proof. (i)When 1 ≤ 𝑝 < �̃�, taking𝐻-inner product by 𝑧
𝑡
+𝜖𝑧

in (48), with 𝜂 = 0, we get

𝑑

𝑑𝑡

𝐻
4
(𝑧, 𝑧

𝑡
) +





𝑧
𝑡






2

− 𝜖






𝐴

−1/4
𝑧
𝑡







2

+ 𝜖 (‖𝑧‖
2
+






𝐴

1/4
𝑧







2

)

= − (𝑔 (𝑢) − 𝑔 (V) , 𝑧
𝑡
+ 𝜖𝑧) ,

(105)

where

𝐻
4
(𝑧, 𝑧

𝑡
) =

1

2

(






𝐴

−1/4
𝑧
𝑡







2

+ (1 + 𝜖) ‖𝑧‖
2
+






𝐴

1/4
𝑧







2

+ 2𝜖 (𝐴
−1/2

𝑧
𝑡
, 𝑧)) ∼





(𝑧, 𝑧

𝑡
)





2

𝐸
1

(106)

for 𝜖 > 0 suitably small. On account of 𝑝 < �̃�, 𝑉
1−𝛿

→ 𝐿
2𝑝

for 𝛿 : 0 < 𝛿 ≪ 1 and the interpolation theorem we have the
control





(𝑔 (𝑢) − 𝑔 (V) , 𝑧

𝑡
+ 𝜖𝑧)





≤ 𝐶 (1 + ‖𝑢‖

𝑝−1

2𝑝
+ ‖V‖𝑝−1

2𝑝
)

⋅ (‖𝑧‖
2𝑝





𝑧
𝑡





+ 𝜖 ‖𝑧‖

2𝑝
‖𝑧‖) ≤ 𝐶 ‖𝑧‖

𝑉
1−𝛿

⋅ (




𝑧
𝑡





+ 𝜖 ‖𝑧‖) ≤

1

2





𝑧
𝑡






2

+

𝜖

2






𝐴

1/4
𝑧







2

+ 𝐶 ‖𝑧‖
2
.

(107)

Therefore, there exists constant 𝜅 > 0 such that

𝑑

𝑑𝑡

𝐻
4
(𝑧, 𝑧

𝑡
) + 𝜅𝐻

4
(𝑧, 𝑧

𝑡
) ≤ 𝐶 ‖𝑧‖

2
,





(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))






2

𝐸
1

≤ 𝐶




(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐶∫

𝑡

0

𝑒
−𝜅(𝑡−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏

≤ 𝐶




(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐾 sup
0≤𝜏≤𝑡

‖𝑧 (𝜏)‖
2
,

(108)

where𝐾 = 𝐶/𝜅.
(ii) When 𝑝 = �̃�, rewrite (105) in the form

𝑑

𝑑𝑡

(𝐻
4
(𝑧, 𝑧

𝑡
) +

1

2

(𝑔 (𝑢) − 𝑔 (V) , 𝑧)) + 

𝑧
𝑡






2

− 𝜖






𝐴

−1/4
𝑧
𝑡







2

+ 𝜖 (‖𝑧‖
2
+






𝐴

1/4
𝑧







2

)

+ 𝜖 (𝑔 (𝑢) − 𝑔 (V) , 𝑧) =
1

2

(�̃� (𝑢, V) , 𝑧2) ,

(109)

where

�̃� (𝑢, V)

= ∫

1

0

𝑔

(𝜆𝑢 + (1 − 𝜆) V) (𝜆𝑢

𝑡
+ (1 − 𝜆) V

𝑡
) 𝑑𝜆.

(110)
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Since 𝑉
1
→ 𝐿

2𝑝, there exists constant 𝑙 > 0 such that




(𝑔 (𝑢) − 𝑔 (V) , 𝑧)



≤ 𝐶 (1 + ‖𝑢‖
𝑝−1

2𝑝
+ ‖V‖𝑝−1

2𝑝
) ‖𝑧‖

2𝑝
‖𝑧‖ ≤ 𝐶 ‖𝑧‖

𝑉
1
‖𝑧‖

≤

1

2

‖𝑧‖
2

𝑉
1

+ 𝑙 ‖𝑧‖
2
,

(111)

which means

(𝑔 (𝑢) − 𝑔 (V) , 𝑧) + 𝑙 ‖𝑧‖2 ≥ −

1

2

‖𝑧‖
2

𝑉
1

,






(�̃� (𝑢, V) , 𝑧2)







≤ 𝐶 (1 + ‖𝑢‖
𝑝−2

2𝑝
+ ‖V‖𝑝−2

2𝑝
) (




𝑢
𝑡





+




V
𝑡





) ‖𝑧‖

2

2𝑝

≤ 𝐶 (




𝑢
𝑡





+




V
𝑡





) ‖𝑧‖

2

𝑉
1

.

(112)

We infer from (109) that

𝑑

𝑑𝑡

𝐻
5
(𝑧, 𝑧

𝑡
) +

1

2





𝑧
𝑡






2

+ 𝐾
5
(𝑧, 𝑧

𝑡
)

≤ 𝐶 (




𝑢
𝑡





+




V
𝑡





) ‖𝑧‖

2

𝑉
1

+ 𝑙 (𝑧, 𝑧
𝑡
)

≤ 𝐶 (




𝑢
𝑡





+




V
𝑡





)𝐻

5
(𝑧, 𝑧

𝑡
) +

1

2





𝑧
𝑡






2

+ 𝑙
2
‖𝑧‖

2
,

(113)

where

𝐻
5
(𝑧, 𝑧

𝑡
)

= 𝐻
4
(𝑧, 𝑧

𝑡
) +

1

2

((𝑔 (𝑢) − 𝑔 (V) , 𝑧) + 𝑙 ‖𝑧‖2)

∼




𝑧
𝑡






2

+






𝐴

1/4
𝑧







2

,

𝐾
5
(𝑧, 𝑧

𝑡
)

= (

1

2

− 𝜖 −

𝜖

√𝜆
1

)




𝑧
𝑡






2

+ 𝜖 (‖𝑧‖
2
+






𝐴

1/4
𝑧







2

+ (𝑔 (𝑢) − 𝑔 (V) , 𝑧))

≥ 2𝜅𝐻
5
(𝑧, 𝑧

𝑡
) − 𝑙𝜖 ‖𝑧‖

2

(114)

for 𝜖 > 0 suitably small. Inserting (114) into (113), we get

𝑑

𝑑𝑡

𝐻
5
(𝑧, 𝑧

𝑡
) + 2𝜅𝐻

5
(𝑧, 𝑧

𝑡
)

≤ 𝐶 (




𝑢
𝑡





+




V
𝑡





)𝐻

5
(𝑧, 𝑧

𝑡
) + 𝑙

2
‖𝑧‖

2
.

(115)

There exists𝑚 > 0 such that

𝐶∫

𝑡

𝑠

(




𝑢
𝑡
(𝜏)





+




V
𝑡
(𝜏)





) 𝑑𝜏

≤ 𝐶(∫

𝑡

𝑠

(




𝑢
𝑡
(𝜏)






2

+




V
𝑡
(𝜏)






2

) 𝑑𝜏)

1/2

(𝑡 − 𝑠)
1/2

≤ 𝜅 (𝑡 − 𝑠) + 𝑚, for 𝑡 ≥ 𝑠 ≥ 0.

(116)

Applying Lemma 16 to (115), we get





(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))






2

𝐸
1

≤ 𝐶𝑒
𝑚
(




(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
1

𝑒
−𝜅𝑡

+ 𝑙
2
∫

𝑡

0

𝑒
−𝜅(𝑡−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏)

≤ 𝐶𝑒
𝑚 



(𝑧 (0) , 𝑧

𝑡
(0))






2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐾 sup
0≤𝜏≤𝑡

‖𝑧 (𝜏)‖
2
,

(117)

where𝐾 = 𝐶𝑒
𝑚
𝑙
2
/𝜅. Lemma 17 is proved.

Proof of Theorem 15. The estimates (93) and (104) show
that the dissipative system (𝑇(𝑡), 𝐸

1
) is quasi-stable on the

absorbing set B
𝑅
, so the conclusions (i) and (ii) follow

directly from the standard theory on global attractor (cf.
Theorems 7.9.4–7.9.6 and 7.9.8 in [30]).

The energy equality holds and shows that 𝐻(𝑢, 𝑢
𝑡
) is a

strictly Lyapunov function on 𝐸
1
, so the dynamical system

(𝑇(𝑡), 𝐸
1
) is gradient, and by conclusion (ii), it has a compact

global attractor. Therefore, the conclusion (iii) of Theorem 4
holds (cf. Theorems 2.28 and 2.31 in [20]).

We see from the conclusion (ii) that the global attractor
A is included and bounded in 𝐸

2
= 𝑉

2
× 𝑉

1
. Let D be the

closure of the 1-neighborhood ofA in 𝐸
2
; that is,

D = [{𝜁 ∈ 𝐸
2
| dist

𝐸
2
{𝜁,A} ≤ 1}]

𝐸
1

. (118)

Then D is bounded in 𝐸
2
and closed in 𝐸

1
, and it is an

absorbing set of 𝑇(𝑡); without loss of generality we assume
that 𝑇(𝑡)D ⊂ D, 𝑡 ≥ 0. By Lemma 17, 𝑇(𝑡) is quasi-stable on
D. For every 𝜑

0
∈ D, 𝜑(𝑡) = 𝑆(𝑡)𝜑

0
= (𝑢(𝑡), 𝑢

𝑡
(𝑡)) ∈ D and

by (14), ‖𝑢
𝑡𝑡
‖ ≤ 𝐶(D),





𝑇 (𝑡

2
) 𝜑

0
− 𝑇 (𝑡

1
) 𝜑

0




𝐸
1

≤ ∫

𝑡
2

𝑡
1






𝜑

(𝑡)





𝐸
1

𝑑𝑡

≤ 𝐶 (D)




𝑡
2
− 𝑡

1





.

(119)

So 𝑇(𝑡) has in 𝐸
1
an exponential attractor (cf. Theorem 7.9.9

in [30]). Theorem 15 is proved.

Remark 18. Comparing Theorem 8 with Theorem 2.2 in [17]
one finds that the critical case 𝑝 = �̃� is solved in natural
energy space 𝐸, the restriction 𝑁 ≤ 5 is removed in
the subcritical case 𝑝 < �̃�, the higher regularity of the
global attractor is obtained, and the exponential attractor is
established in 𝐸

1
.
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