14,314 research outputs found

    Topological Interference Management with Alternating Connectivity

    Full text link
    The topological interference management problem refers to the study of the capacity of partially connected linear (wired and wireless) communication networks with no channel state information at the transmitters (no CSIT) beyond the network topology, i.e., a knowledge of which channel coefficients are zero (weaker than the noise floor in the wireless case). While the problem is originally studied with fixed topology, in this work we explore the implications of varying connectivity, through a series of simple and conceptually representative examples. Specifically, we highlight the synergistic benefits of coding across alternating topologies

    On the Optimality of Treating Interference as Noise: General Message Sets

    Full text link
    In a K-user Gaussian interference channel, it has been shown that if for each user the desired signal strength is no less than the sum of the strengths of the strongest interference from this user and the strongest interference to this user (all values in dB scale), then treating interference as noise (TIN) is optimal from the perspective of generalized degrees-of-freedom (GDoF) and achieves the entire channel capacity region to within a constant gap. In this work, we show that for such TIN-optimal interference channels, even if the message set is expanded to include an independent message from each transmitter to each receiver, operating the new channel as the original interference channel and treating interference as noise is still optimal for the sum capacity up to a constant gap. Furthermore, we extend the result to the sum-GDoF optimality of TIN in the general setting of X channels with arbitrary numbers of transmitters and receivers

    Multilevel Topological Interference Management

    Full text link
    The robust principles of treating interference as noise (TIN) when it is sufficiently weak, and avoiding it when it is not, form the background for this work. Combining TIN with the topological interference management (TIM) framework that identifies optimal interference avoidance schemes, a baseline TIM-TIN approach is proposed which decomposes a network into TIN and TIM components, allocates the signal power levels to each user in the TIN component, allocates signal vector space dimensions to each user in the TIM component, and guarantees that the product of the two is an achievable number of signal dimensions available to each user in the original network.Comment: To be presented at 2013 IEEE Information Theory Worksho

    Vector meson-vector meson interaction in a hidden gauge unitary approach

    Get PDF
    The formalism developed recently to study vector meson--vector meson interaction, and applied to the case of ρρ\rho\rho, is extended to study the interaction of the nonet of vector mesons among themselves. The interaction leads to poles of the scattering matrix corresponding to bound states or resonances. We show that 11 states (either bound or resonant) get dynamically generated in nine strangeness-isospin-spin channels. Five of them can be identified with those reported in the PDG, i.e., the f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f'_2(1525), and K2(1430)K^*_2(1430). The masses of the latter three tensor states have been used to fine-tune the free parameters of the unitary approach, i.e., the subtraction constants in evaluating the vector meson -vector meson loop functions in the dimensional regularization scheme. The branching ratios of these five dynamically generated states are found to be consistent with data. The existence of the other six states should be taken as predictions to be tested by future experiments.Comment: typos corrected; more discussions; one of the appendix rearrange

    On Charge Quantization and Abelian Gauge Horizontal Symmetries

    Get PDF
    Under the assumption that there exists a local gauge horizontal symmetry GHG_H wich allows only for a top quark mass at tree level, we look for the constraints that charge quatization and the family structure of the standard model imposes on that symmetry.Comment: 13 pages, LaTeX, Acepted in Physics Letters

    Low-lying even parity meson resonances and spin-flavor symmetry

    Get PDF
    A study is presented of the ss-wave meson-meson interactions involving members of the ρ\rho-nonet and of the π\pi-octet. The starting point is an SU(6) spin-flavor extension of the SU(3) flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry breaking terms are then included to account for the physical meson masses and decay constants, while preserving partial conservation of the axial current in the light pseudoscalar sector. Next, the TT-matrix amplitudes are obtained by solving the Bethe Salpeter equation in coupled-channel with the kernel built from the above interactions. The poles found on the first and second Riemann sheets of the amplitudes are identified with their possible Particle Data Group (PDG) counterparts. It is shown that most of the low-lying even parity PDG meson resonances, specially in the JP=0+J^P=0^+ and 1+1^+ sectors, can be classified according to multiplets of the spin-flavor symmetry group SU(6). The f0(1500)f_0(1500), f1(1420)f_1(1420) and some 0+(2++)0^+(2^{++}) resonances cannot be accommodated within this SU(6) scheme and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I3/2I \ge 3/2 and/or Y=2|Y|=2) with masses in the range 1.4--1.6 GeV, which would complete the 27127_1, 10310_3, and 10310_3^* multiplets of SU(3)\otimesSU(2).Comment: 43 pages, 2 figures, 61 tables. Improved discussion of Section II. To appear in Physical Review

    Two-photon and one photon-one vector meson decay widths of the f0(1370)f_0(1370), f2(1270)f_2(1270), f0(1710)f_0(1710), f2(1525)f'_2(1525), and K2(1430)K^*_2(1430)

    Get PDF
    We calculate the radiative decay widths, two-photon (γγ\gamma\gamma) and one photon-one vector meson (VγV\gamma), of the dynamically generated resonances from vector meson-vector meson interaction in a unitary approach based on the hidden-gauge Lagrangians. In the present paper we consider the following dynamically generated resonances: f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f_2'(1525), K2(1430)K^*_2(1430), two strangeness=0 and isospin=1 states, and two strangeness=1 and isospin=1/2 states. For the f0(1370)f_0(1370) and f2(1270)f_2(1270) we reproduce the previous results for the two-photon decay widths and further calculate their one photon-one vector decay widths. For the f0(1710)f_0(1710) and f2(1525)f_2'(1525) the calculated two-photon decay widths are found to be consistent with data. The ρ0γ\rho^0\gamma, ωγ\omega\gamma and ϕγ\phi\gamma decay widths of the f0(1370)f_0(1370), f2(1270)f_2(1270), f0(1710)f_0(1710), f2(1525)f'_2(1525) are compared with the results predicted by other approaches. The K+γK^{*+}\gamma and K0γK^{*0}\gamma decay rates of the K2(1430)K^*_2(1430) are also calculated and compared with the results obtained in the framework of the covariant oscillator quark model. The results for the two states with strangeness=0, isospin=1 and two states with strangeness=1, isospin=1/2 are predictions that need to be tested by future experiments.Comment: More discussions about the relation between qqbar states and dynamically generated states; version published in PRD

    Neutral current coherent pion production

    Get PDF
    We investigate the neutrino induced coherent pion production reaction at low and intermediate energies. The model includes pion, nucleon and Delta(1232) resonance as the relevant hadronic degrees of freedom. Nuclear medium effects on the production mechanisms and pion distortion are taken into account. We obtain that the dominance of the Delta excitation holds due to large cancellations among the background contributions. We consider two sets of vector and axial-vector N-Delta transition form-factors, evidencing the strong sensitivity of the results to the axial coupling C5A(0). The differences between neutrino and antineutrino cross sections, emerging from interference terms, are also discussed.Comment: 4 pages, 3 figures, minor corrections, a few references adde
    corecore