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Departamento de F́ısica Atómica, Molecular y Nuclear,

Universidad de Granada, E-18071 Granada, Spain
(Dated: November 4, 2010)

Based on a spin-flavor extension of chiral symmetry, a novel s−wave meson-meson interaction
involving members of the ρ−nonet and of the π−octet is introduced and its predictions are analyzed.
The starting point is the SU(6) version of the SU(3) flavor Weinberg-Tomozawa Lagrangian. SU(6)
symmetry breaking terms are then included to account for the physical meson masses and decay
constants in a way that preserves (broken) chiral symmetry. Next, the T−matrix amplitudes are
obtained by solving the Bethe Salpeter equation in coupled-channel and the poles are identified with
their possible Particle Data Group (PDG) counterparts. It is shown that most of the low-lying even
parity PDG meson resonances, specially in the JP = 0+ and 1+ sectors, can be classified according to
multiplets of SU(6). The f0(1500), f1(1420) and some 0+(2++) resonances cannot be accommodated
within this scheme and thus they would be clear candidates to be glueballs or hybrids. Finally, we
predict the existence of five exotic resonances (I ≥ 3/2 and/or |Y | = 2) with masses in the range
1.4–1.6 GeV, which would complete the 271, 103, and 10∗3 multiplets of SU(3)⊗SU(2).

PACS numbers: 11.10.St Bound and unstable states; Bethe-Salpeter equations, 13.75.Lb Mes14.40.Rt Exotic
mesons on-Meson interactions, 14.40.Be Light mesons (S=C=B=0), 14.40.Rt Exotic mesons.

I. INTRODUCTION

Chiral perturbation theory (ChPT), a systematic implementation of chiral symmetry and of its pattern of sponta-
neous and explicit breaking, provides a model independent scheme where multitude of low-energy non-perturbative
strong-interaction phenomena can be understood. It has been successfully applied to study different processes, both
in the meson-meson and in the meson-baryon sectors, involving light (u and d) or strange (s) quarks [1–10].
However, by construction, ChPT is only valid at low-energies and it cannot describe the nature of hadron resonances.

In recent years, it has been shown that by unitarizing the ChPT amplitudes one can greatly extend the region of
application of ChPT.1 This approach, commonly referred as Unitary Chiral Perturbation Theory (UChPT), has
received much attention and provided many interesting results [11–46]. In particular, many meson-meson and meson-
baryon resonances and bound states appear naturally within UChPT. These states are then interpreted as having
“dynamical nature.” In other words, they are not genuine qq̄ or qqq states, but are mainly built out of their meson-
meson or meson-baryon components. One way to distinguish these two pictures is to study the dependence on NC of
the resonance masses and widths [47–54].
Some examples are the low-lying scalar mesons, f0(600), f0(980), a0(980) and K∗

0 (800), which naturally appear as
resonant states of two mesons of the pion octet [15, 18–22, 24, 27, 30], or the low-lying JP = 1/2− baryonic resonances,
N(1535), N(1650), Λ(1405) and Λ(1670), which are found after unitarizing the ChPT amplitudes for the scattering of
π pseudoscalar octet mesons off baryons belonging to nucleon octet [14, 17, 28, 31–34, 36, 38, 41, 42], or the low-lying

1 Several frameworks have been proposed to unitarize the amplitudes, though the most common and successful are the inverse amplitude
method and the solution of the Bethe-Salpeter (BS) equation. In this latter case, several renormalization schemes have been also
employed, differing mostly in the treatment of the off-shell effects. In general, the different methods give similar results for the lowest-
lying resonances.
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JP = 3/2− baryonic resonances (e.g. the Λ(1520)) found in the interaction of mesons of the pion octet with baryons
of the ∆ decuplet [35, 40, 46], and finally the low-lying axial vector mesons, a1(1260), b1(1235), h1(1170), f1(1285),
K1(1270) that can be described as resonant states of a π octet and a ρ vector nonet mesons [37, 43].
These ideas have also been extended to study three-body meson resonances [55, 56] and to systems including a

heavy quark, which has allowed to describe also meson [57–60] and baryon [61–66] charmed resonances. In these
latter cases, of course one cannot invoke chiral dynamics to construct the tree level amplitudes that later on will be
unitarized. Thus for instance in Refs. [61–64], the universal vector-meson coupling hypothesis is exploited to break
the SU(4) symmetry in a convenient and well-defined manner. This is done by a t−channel exchange of vector mesons
between pseudoscalar mesons and baryons, in such a way that chiral symmetry is preserved in the light meson sector,
while the interaction is still of the Weinberg-Tomozawa (WT) type [67, 68]. A serious limitation of this approach
is that it is not consistent with heavy-quark-spin symmetry, which is a proper QCD symmetry that appears when
the quark masses become much larger than the typical confinement scale, ΛQCD. The recent works of Refs. [65, 66]
develop a scheme consistent with both chiral and heavy-quark-spin symmetry by starting from a larger SU(8) spin-
flavor symmetry group, and conveniently breaking the spin (in the light u, d, s sector) and flavor symmetries. In both
schemes, coupled-channel unitarity plays a major role.
Coupled-channel unitarity has been also the essential ingredient in other recent works, where the vector meson-

vector meson [69, 70] and vector meson-octet and decuplet baryon interactions [71–73] in the light sector have been
studied. In these cases, the formalism of the hidden gauge interaction for vector mesons of [74, 75] is adopted, and it
has led to very successful results from a phenomenological point of view [76–78].
The approach taken in Refs. [41, 44], where SU(6) spin-flavor symmetry is invoked, allows to assign the vector

mesons of the ρ nonet and the pseudoscalar mesons of the π octet in the same (35) SU(6) multiplet, while the baryons
of the nucleon octet and ∆ decuplet are placed in the totally symmetric 56 SU(6) representation. The scheme is
completely constrained by requiring that its restriction to the π-N octet sector will reduce to the SU(3) s−wave
WT Lagrangian, leading order (LO) of the chiral expansion in this case. Finally, the SU(6) symmetry is broken by
using physical masses and decay constants. The corresponding BS amplitudes successfully reproduce the previous
SU(3)-flavor WT results for the lowest-lying s−and d−wave odd parity baryon resonances obtained from scattering of
the mesons of the pion octet off baryons of the nucleon octet and delta decuplet [44].2 The extension of the scheme to
the charm sector [65, 66] naturally accommodates heavy-quark-spin symmetry, as mentioned above, since it encodes
spin symmetry in the charm sector, while this is not the case for those models based on vector meson exchanges.
In this work, we present the extension of the meson-baryon scheme derived in Ref. [41] to the meson-meson sector.

The basis of our approach is rooted in the ideas of Caldi and Pagels [79, 80]. These authors identify vector mesons of
the nonet as “dormant” Nambu-Goldstone bosons of an extended chiral symmetry SU(6)L⊗SU(6)R. This symmetry
is intrinsically an approximate one and the vector mesons acquire mass through relativistic corrections. Such scheme
naturally solves a number of puzzles involving the nature and classification of vectors mesons and makes predictions
in remarkable agreement with the experiment [79, 80]. The low energy theorems derived from partial conservation of
the tensor current have been obtained in [81]. The Skyrmion of the SU(6)L⊗SU(6)R has been studied in [82]. The
validity of the dormant Nambu-Goldstone boson description has been verified in the lattice [83].
Even if, for illustration purposes, SU(3) flavor symmetry is assumed to be exact and the pseudoscalar mesons are

assumed to be massless (these simplifying assumptions are not essential and can be lifted) the breaking of SU(6)
down to SU(3) (due to the vector mesons masses being nonvanishing) implies a breaking of SU(6)L⊗SU(6)R down
to SU(3)L⊗SU(3)R. One of the contributions of the present work is the construction of suitable Lagrangian mass
terms achieving such pattern of symmetry breaking. Therefore the approximate spin-flavor symmetry scheme provides
a unified framework to deal with lowest lying mesons, implementing the required symmetry breaking patterns and
in particular fulfilling low energy theorems derived from chiral symmetry. In addition, when the present scheme is
extended to include heavier quark flavors, the QCD heavy-quark spin symmetry can also be naturally accommodated
in the spin-flavor approach through a suitable flavor breaking pattern. Although the predictions so obtained are not
so reliable as those derived for pseudoscalar mesons assuming only the standard chiral symmetry breaking pattern
of QCD, the fact is that vector mesons do exist and they are known to play a relevant role in hadronic physics.
Inescapably, they will interact among themselves and with other pseudoscalar mesons and will certainly influence the
properties of the known mesons resonances. However not so many approaches to deal with vector mesons are available,
and the existing ones, e.g., the hidden gauge approach [74, 75] are also subject to a certain amount of modeling not
directly rooted in QCD. The theoretically founded models to deal with vector mesons being scarce, we regard the
spin-flavor symmetric scenario (suitably broken) as a reasonable alternative approach and we believe it makes sense
to work out the predictions of such a model. Moreover, we remarkably find that most of the low-lying even parity

2 The predictions of this scheme for the vector meson nonet-baryon decuplet sector have not been derived yet.



3

PDG meson resonances can be classified according to multiplets of the spin-flavor symmetry group SU(6).
We will study the s−wave interaction of two members of the 35 (π−octet + ρ−nonet) SU(6) multiplet by means

of an enlarged WT meson Lagrangian to accommodate vector mesons, which guarantees that chiral symmetry is
recovered when interactions between pseudoscalar Nambu-Goldstone bosons are being examined. We will pay a
special attention to the novel pseudoscalar-vector (PV ) and vector-vector (V V ) channels, where we will compare our
predictions with previous recent results [43, 69, 70] obtained within the formalism of the hidden gauge interaction
for vector mesons. In the PV → PV sector, chiral symmetry constrains the interactions, and our model and that
developed in Ref. [43] totally agree at LO in the chiral expansion, despite their different apparent structure and
origin. As a result of this work, we show that most of the low-lying even parity meson resonances, specially in the
JP = 0+ and 1+ sectors, can be classified according to multiplets of the spin-flavor symmetry group SU(6). This
can be seen in Table I, which summarizes the set of dynamically generated resonances obtained in this work. The
remaining firmly established positive parity PDG meson states below 2 GeV, that cannot be accommodated within
SU(6) multiplets, are clear candidates to be glueballs or hybrids. This is the case of the f0(1500), f1(1420) and some
0+(2++) resonances. On the other hand, we predict the existence of five exotic resonances (I ≥ 3/2 and/or |Y | = 2)
with masses in the region 1.4–1.6 GeV, which would complete the 271 and 103 and 10∗3 SU(3)⊗SU(2) multiplets.
The extension of the model presented here to the charm sector would naturally accommodate heavy-quark spin

symmetry. On the contrary, this latter QCD requirement will not be easily met for models [57–60] based on the
formalism of the hidden gauge interaction for vector mesons, since those would not treat in the same way pseudoscalar
(D) and vector (D∗) charmed mesons.
This paper is organized as follows: In Sect. II, we start from the chiral Lagrangian for pseudoscalar-pseudoscalar

interactions (Subsect. II A) and extend it to calculate the interaction vertices between two pseudoscalars, one pseu-
doscalar and one vector, and between two vector mesons in terms of SU(6) projectors and the corresponding eigenvalues
(Subsect II B). Also in this subsection, we show how to obtain three relations connecting these eigenvalues by match-
ing our amplitudes to the LO ChPT ones for two pseudoscalar scattering and how finally all eigenvalues can be fixed.
Next in Subsect. II D, we discuss the nature of the SU(6) symmetry breaking terms needed to account for the physical
meson decay constant and masses, without spoiling partial conservation of the axial current in the light pseudoscalar
sector. Sec III deals with the BS equation and with issues related with its renormalization. In Sect. IV, we present
results in terms of the unitarized amplitudes and search for poles on the complex plane. We discuss the results sector
by sector trying to identify the obtained resonances or bound states with their experimental counterparts [84], and
compare our results with earlier studies. A brief summary and some conclusions follow in Sect. V. In Appendix A
the various potential matrices are compiled for the different hypercharge, isospin and spin sectors. In Appendix B
details are given on the computation of the eigenvalues of various operators.

II. SU(6) DESCRIPTION OF VECTOR-PSEUDOSCALAR AND VECTOR-VECTOR INTERACTIONS

A. SU(3) and chiral symmetry

The lowest-order chiral Lagrangian describing the interaction of pseudoscalar Nambu-Goldstone bosons is [3]

L =
f2

4
Tr
(
∂µU

†∂µU +M(U + U † − 2)
)
, (1)

where f ∼ 90 MeV is the chiral-limit pion decay constant, U = ei
√
2Φ/f is the SU(3) representation of the meson

fields, with

Φ =







1√
6
η + 1√

2
π0 π+ K+

π− 1√
6
η − 1√

2
π0 K0

K− K̄0 −
√

2
3η







, (2)

and the matrix M = diag(m2
π,m

2
π, 2m

2
K −m2

π) is determined by the pion and kaon meson masses. Expanding up to
four meson fields, one finds

Lint =
1

12f2
Tr
(
[Φ, ∂µΦ][Φ, ∂

µΦ] +MΦ4
)
. (3)
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TABLE I: Tentative SU(6) classification of the poles found in this work, together with their possible PDG counterparts [84].
JP , Y, IG stand for the spin-parity, hypercharge, isospin and G−parity, respectively [for non-strange states, charge conjugation
is given by G = (−1)I ]. Those resonances marked with † need to be confirmed, while a (*) symbol indicates that the resonance
does not appear in the PDG. Finally, a question mark symbol expresses our reservations on the assignment. Mixings between
states with the same JP IGY quantum numbers, but belonging to different SU(6) and/or SU(3) multiplets have not been
considered.

JP = 0+ JP = 1+

SU(6) SU(3)⊗SU(2) Y IG
√
s [MeV] PDG [84]

Irrep Irrep (this work)

1 11 0 0+ (635,−202) f0(600)

±1 1/2 (830,−170) K∗
0 (800)

†

35s 81 0 1− (991,−46) a0(980)

0 0+ (969, 0) f0(980)

±2 1 (1564,−66) (*)

±1 3/2 (1433,−70) (*)

±1 1/2 (1428,−24) K∗
0 (1430)

271 0 0+ (1350,−62) f0(1370)

0 1− (1442,−5) a0(1450)

189 0 2+ (1419,−54) X(1420)†

±1 1/2 (1787,−37) K∗
0 (1950)

†

81 0 1− (1760,−12) a0(2020)
† ?

0 0+ (1723,−52) f0(1710)

11 0 0+ −

SU(6) SU(3)⊗SU(2) Y IG
√
s [MeV] PDG [84]

Irrep Irrep (this work)

±1 1/2 (1188,−64) K1(1270)

83 0 1+ (1234,−57) b1(1235)

35s 0 0− (1373,−17) h1(1380)
†

13 0 0− (1006,−85) h1(1170)

±2 0 (1608,−114) (*)

103 ±1 3/2 (1499,−127) (*)

& ±1 1/2 (1414,−66) K1(1400) ?

10∗3 0 1+ (1642,−139) b1(1960)
† ?

189 0 1− (1568,−145) a1(1640)
†

±1 1/2 (1250,−31) K1(...) (*)

8a3 0 1− (1021,−251) a1(1260)

0 0+ (1286, 0) f1(1285)

±1 1/2 (1665,−95) K1(1650)
† ?

8s3 0 1+ −
0 0− (1600,−67) h1(1595)

†

JP = 2+

SU(6) SU(3)⊗SU(2) Y IG
√
s [MeV] PDG [84]

Irrep Irrep (this work)

189 ±1 1/2 (1708,−156) K∗
2 (1430) ?

& 85 0 1− (1775,−6) a2(1700)
†

Contact V V 0 0+ (1783,−19) f2(1640)
† ?

15 0 0+ (1289, 0) f2(1270)

±1 1/2 −
85 0 1− (1228, 0) a2(1320)

Contact V V 0 0+ −
15 0 0+ −

Taking a common mass, m, for all the (pseudo) Nambu-Goldstone mesons and projecting into s−wave, the above
Lagrangian leads to an interaction Hamiltonian (on shell)

H =
3s− 4m2

6f2
Ĥ1 −

m2

3f2
Ĥ2. (4)

where
√
s is the total energy of the meson pair in the center of mass system, and Ĥ1 and Ĥ2 are coupled-channel

matrices; they are IY block diagonal, with I and Y the total isospin and hypercharge (strangeness) of either the
initial or final meson pair. The normalization can be unambiguously fixed thanks to the relation of the diagonal
matrix elements of H(s) with the s−wave scattering amplitude, F(s), the phase shifts δ(s) and inelasticities η(s),

Hii(s) = −8π
√
sFii(s), 2 i pF = η e2 iδ − 1, (5)

where p is the momentum in the center of mass frame of the two mesons.
The operators Ĥ1 and Ĥ2 are linear combinations of orthogonal projectors, Pµ, onto the SU(3) µ representations



5

that appear in the reduction of the product of representations 8⊗ 8. Namely,

Ĥ1 = −3P1 −
3

2
P8s + P27, Ĥ2 = 5P1 + P8s + P27. (6)

Note that only representations which are symmetric under the permutation of the two octets appear. This is a
consequence of s−wave Bose statistics, once we have assigned a common mass for all pseudoscalar mesons.
On the other hand, by imposing just SU(3) flavor symmetry, the interaction Hamiltonian would be of the form

H(s) =
∑

µ

Fµ(s)Pµ (7)

with the SU(3) representation µ running over the 1, 8s and 27 irreducible symmetric representations that appear in
the reduction of 8⊗ 8, and Fµ arbitrary functions of the Mandelstam variable s. The approximate chiral symmetry of
QCD, which is much more restrictive than just flavor symmetry, and its pattern of spontaneous and explicit symmetry
breaking fixes this enormous freedom and allows to determine the chiral expansion of the functions Fµ(s). At LO,
the functions Fµ can be easily read off from Eqs. (4) and (6).
The first contribution in Lint of Eq. (3) is the WT term in this ππ case. There is a WT term for the interaction of

Nambu-Goldstone bosons off any target. Its form follows entirely from chiral symmetry (and its pattern of symmetry
breaking) [67, 68] and fully accounts for the interaction near threshold. Specifically, assuming exact chiral symmetry
(and so massless Nambu-Goldstone bosons) and for s-wave, H(s) vanishes at threshold and moreover

dH(s)

ds

∣
∣
∣
threshold

= ξ
1

2f2
ĤWT (8)

where ξ is the symmetry factor, namely, 1/2 if the target is another Nambu-Goldstone boson and 1 if it is not, and

ĤWT =
∑

µ

λµPµ, (9)

where µ runs over the allowed SU(3) representations. Note that H(s) acts on different spaces depending on the target,
e.g., (8⊗ 8)sym for ππ, 8⊗ 8 for πρ, and 8⊗ 1 for πω1. For two flavors the WT interaction comes as the scalar product
of the Nambu-Goldstone boson and target isospin operators [85] (and so it depends only on the isospin target). For

any number NF of (massless) flavors one has instead
∑N2

F−1
a=1 Ja

NGJ
a
target and this fixes the eigenvalues (see e.g. [86])

λµ = C2(µ)− C2(µNG)− C2(µtarget), (10)

where C2(µ) refers to the value of the quadratic Casimir of the irrep µ in SU(NF ) (with normalization C2(adj) = NF ),
µNG is the adjoint representation.
This gives for ππ scattering the eigenvalues quoted in (6) for NF = 3, and new ones for πρ and πω1 (ω1 refers to

the SU(3) singlet):

λπ
1 = λρ

1 = −6, λπ
8s = λρ

8s
= λρ

8a
= −3, λπ

27 = λρ
27 = 2, λρ

10 = λρ
10∗ = 0, λω1

8 = 0 . (11)

Exact SU(3) symmetry has been assumed throughout in this discussion, so π refers to the full π octet, and so on.
Note that no configuration mixing (e.g. |πρ; 8s〉 → |πρ; 8a〉) takes place within the WT interaction. These results will
be used next.

B. Spin-flavor and chiral symmetries

With the inclusion of spin there are 36 quark-antiquark (qq̄) states, and the SU(6) group representation reduction
(denoting the SU(6) multiplets by their dimensionality and an SU(3) multiplet µ of spin J by µ2J+1) reads

6⊗ 6
∗ = 35⊕ 1 = 81 ⊕ 83 ⊕ 13

︸ ︷︷ ︸

35

⊕ 11
︸︷︷︸

1

. (12)

The lowest bound qq̄ state is expected to be an s−state and the relative parity of a fermion-antifermion pair being
odd, the octet of pseudoscalar (K,π, η, K̄) and the nonet of vector (K∗, ρ, ω, K̄∗, φ) mesons are commonly placed in
the 35 representation [87–89].
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Strong interaction conserves total spin (J), hypercharge (Y ), and isospin (I) (assuming equal masses for the up
and down quarks). Furthermore, since we consider only s−wave states, the total spin of the meson-meson states is
simply the sum of their individual spins. Therefore, on account of the SU(6) group reduction

35⊗ 35 = 1⊕ 35s ⊕ 35a ⊕ 189⊕ 280⊕ 280
∗ ⊕ 405 , (13)

a meson-meson state written in terms of the SU(6) basis takes the form

|M1M2;Y IJ〉 =
∑

µ,α,R

(

µM1
µM2

µ

IM1
YM1

IM2
YM2

IY

)(

35 35 R

µM1
JM1

µM2
JM2

µJα

)

|R;µα
2J+1IY 〉, (14)

where Y = YM1
+ YM2

, |IM1
− IM2

| ≤ I ≤ IM1
+ IM2

, |JM1
− JM2

| ≤ J ≤ JM1
+ JM2

, µ and R denote generic SU(3)
and SU(6) representations, respectively. IM1,2

, YM1,2
, JM1,2

are the isospin, hypercharge, and spin of the two mesons.
In the above equation, R = 1,189,35s,405,35a,280 and 280

∗, µ = 1, 8s, 8a, 27, 10, 10
∗, and α accounts for the

multiplicity of each of the µ2J+1 SU(3) multiplets of spin J . In Eq. (14), the two coefficients multiplying each element
of the SU(6) basis, |R, µα

2J+1IY 〉, are the SU(3) isoscalar factors [90] and the SU(6) Clebsch-Gordan coefficients [91],
respectively.
At this point one can ask how does SU(6) symmetry go along with chiral symmetry. Certainly, because chiral

symmetry must be present in any reliable approach this is a central point in this work. To clarify this issue we will
consider the following exercise, namely, whether it is possible for an SU(6) invariant interaction to reproduce the low
energy theorems quoted in Eq. (8) with the correct eigenvalues in Eq. (11). (Again we assume exact chiral symmetry
and s-wave.) As it turns out, this is indeed possible. Such solutions correspond to operators HSU(6)(s) acting on the
spin-flavor space 35⊗ 35 of the form

HSU(6)(s) =
1

2f2

∑

R

FR(s)λRPR (15)

where R runs over the seven SU(6) irreps in Eq. (13) and PR are the corresponding projectors. The functions

FR(s) vanish at threshold and are normalized by the condition dFR(s)/ds|threshold = 1, e.g. FR(s) = s− 1
2

∑4
i=1 q

2
i .

Therefore,

dHSU(6)(s)

ds

∣
∣
∣
threshold

=
1

2f2
Ĥ

SU(6)
WT (16)

with

Ĥ
SU(6)
WT =

∑

R

λRPR . (17)

Finally, the eigenvalues λR reproducing those in (11) are3

λ1 = −12, λ35s
= λ35a

= −6, λ189 = −2, λ405 = 2, λ280 = λ280∗ = 0. (19)

Several comments are pertinent here. i) The functions FR(s) depend on the concrete model. Chiral symmetry fixes
the derivative of HSU(6)(s) with respect to s at threshold. (A detailed model is developed below.) ii) The eigenvalues

λR are unique and are such that Ĥ
SU(6)
WT , when restricted to the ππ, πρ and πω1 subspaces yield the correct SU(3)

eigenvalues of subsection II A. iii) The projectors on antisymmetric representations vanish on PP states. However,
for the more general case involving vector mesons, both symmetric and antisymmetric representations (e.g. 35s and
35a) are required even in s-wave. Although the π octet and the ρ nonet fall in the same SU(6) representation they
are kinematically distinguishable through their mass. To give mass to the vector mesons certainly requires breaking
SU(6) in the Lagrangian (not only through mass terms but also by interaction terms, due to chiral symmetry). This

3 For πM scattering the relation between SU(3) and SU(6) eigenvalues is

λM
µ2J+1α

= 2
∑

R

λR

(

35 35 R

81 µM
2J+1

µ2J+1α

)2

. (18)
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simply means that HSU(6)(s) is not the full H(s) acting on the space 35 ⊗ 35. Besides HSU(6)(s) there are further
terms, δH(s), which do not have a contribution to H(sthreshold) nor dH(s)/ds|threshold when they are restricted to
the subspaces PP → PP or PV → PV . (Once again we refer to the model below which fulfills these requirements.)

iv) Ĥ
SU(6)
WT can be regarded as an extension from WT in flavor SU(3) to a WT-like term in spin-flavor SU(6). The

eigenvalues λR in Eq. (19) obey the general WT rule in Eq. (10) applied to SU(6) instead of SU(3). Actually there
is an extra factor of two in Eq. (16) since the symmetry factor is ξ = 1/2 for 35 × 35. However this is not related

to the validity of Eq. (10) in the SU(6) extended version of WT but to the fact that f6 = f/
√
2 applies instead of f

in this extended version. (The same factor 2 appears in Eq. (18).) No such factors appear when SU(NF ) is extended
to SU(N ′

F ) (a larger number or flavors). This is because the embedding of SU(NF ) into SU(N ′
F ) is different from

the embedding of SU(NF ) into spin-flavor SU(2NF ). (See below.) As will be obvious from what follows the same
exercise can be repeated, successfully, for any number of flavors and not only for meson-meson scattering but also for
meson-baryon [41, 49].
The previous discussion suggests that chiral symmetry, SU(3)L⊗SU(3)R, is compatible with spin-flavor symmetry,

SU(6). (Note that 10 couplings, λµ, have been reproduced using only 7 unknowns, λR, and a similar overdetermination
exists for more flavors of for meson-baryon.) In fact such compatibility was exposed by Caldi and Pagels in [79, 80]
by the simple method of extending SU(3)L to SU(6)L and SU(3)R to SU(6)R where SU(6) refers to spin-flavor.
This produces a larger symmetry group, SU(6)L⊗SU(6)R, which includes chiral and spin-flavor groups as subgroups.
Specifically, the usual spin-flavor SU(6) corresponds to the subgroup of diagonal transformations (i.e., the same SU(6)
transformation in L and R sectors) similar to SU(3)V (flavor group) in SU(3)L⊗SU(3)R.
The spin-flavor extended chiral group SU(6)L⊗SU(6)R is a realization of the Feynman–Gell-Mann–Zweig algebra

[92] and was introduced in [79, 80] precisely to solve an apparent inconsistency. Namely, on the one hand the
phenomenological successful spin-flavor symmetry in the quark model puts π and ρ in the same SU(6) multiplet. On
the other, the pion is a collective state, the Nambu-Goldstone boson from spontaneous breaking of chiral symmetry.
In the scenario of [79, 80], one would find that in an exactly SU(6) symmetric world the π octet and the ρ nonet are
the Nambu-Goldstone bosons of the spontaneous breaking of SU(6)L⊗SU(6)R down to SU(6). Spin-flavor symmetry
is an approximated one and so the ρ nonet mesons are regarded as “dormant” Nambu-Goldstone bosons. As it is
known, spin-flavor symmetries cannot be exact as they cannot be accommodated with full Poincare invariance [93].
Still one can consider a static limit enjoying SU(6)L⊗SU(6)R symmetry. In the Caldi-Pagels scenario, relativistic
(and so SU(6) breaking) corrections give mass to the vector mesons while pions are still protected by the usual SU(3)
chiral symmetry.
The scenario just described solves a number of puzzles involving vector mesons while maintaining vector meson

dominance, KSFR relations and so on [79, 80]. Here we comment only on two issues, namely, the consequences
regarding the chiral and Lorentz transformations of vector mesons. Because the pion falls in the (3, 3∗) + (3∗, 3)
representation of the chiral group, spin-flavor symmetry requires the ρ to fall in the same representation (and both
in (6, 6∗) + (6∗, 6) of SU(6)L⊗SU(6)R). This is different from vector and axial currents which transform instead as
(8, 1) + (1, 8) under the chiral group. At first the fact that the ρ meson and the vector current transform differently
seems to be in conflict with vector meson dominance. As shown in [79, 80] this not so, due to the spontaneous
breaking of chiral symmetry, for the same reason that PCAC relates pion and axial current, also in different chiral
representations.
Related to the chiral representation is the nature of vectors mesons under Lorentz transformations. This is most

easily exposed by coupling the meson fields to quark bilinears (alternatively the quark bilinear can be regarded as
a representation or interpolating field of the meson, as in Nambu–Jona-Lasinio models). Let us for this discussion
consider just two flavors (NF = 2) and use a linear sigma model representation (as opposed to the non-linear one) as
there it is simpler to expose the chiral transformation properties of the fields. The pion and σ mesons couple to q̄iγ5~τq
and q̄q. Of course, this just of the form q̄LMqR + q̄RM†qL corresponding to the chiral representation (1/2, 1/2). The
coupling can be extended to include vector mesons while preserving spin-flavor

M = σ + iπaτa + iρaiτaσi + · · · . (20)

(Let us remark that these are the linear sigma model mesons fields and will be used only in this subsection. Elsewhere
in this paper the non-linear meson fields are used. Also note that this M is unrelated to the mass term in Eq. (1).)
The dots represent further meson fields to complete a general 2NF × 2NF complex matrix. The space spanned

by such matrices M carries a representation of the group SU(2NF )L ⊗ SU(2NF )R, acting as M → Ω†
LMΩR with

ΩL,R ∈SU(2NF ). This SU(2NF )⊃SU(NF )⊗SU(2) is generated by τa, σi and τaσi. In particular, the σ and π fields
mix under transformations generated by τa with ΩL 6= ΩR. These are the usual chiral transformations. On the other
hand π mixes with ρ (and other mesons) under spin-flavor transformations (ΩL = ΩR). Using the chiral representation
of the Dirac gammas one immediately obtains the coupling

q̄LMqR + q̄RM†qL = q̄(σ + iπaτaγ5 + ρaiτaσ
0i + · · · )q . (21)
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The LR+RL structure (i.e. (3, 3∗) + (3∗, 3)) requires quark bilinears constructed with 1, γ5 or σµν which commute
with γ5, while γµ or γµγ5 produce LL+RR (i.e. (1, 8) + (8, 1)). This implies that the spin-flavor approach favors an
antisymmetric tensor representation of vector mesons [2]. The antisymmetric tensor Vµν contains 3 spurious degrees of
freedom and one can choose to take V0i as the dynamical fields [94]. This is the choice in Eq. (21) with ρai ∼ q̄τaσ

0iq.
The description of vector mesons using antisymmetric tensors has been shown to be consistent with all expected
properties of vector mesons [85, 94, 95]. (See e.g. [96] for the use of q̄σµνq as interpolating field of the vector meson
in the context of Nambu–Jona-Lasinio models.)
Conversely, the quark bilinear construction naturally favors a (3, 3∗)+(3∗, 3) representation instead of (1, 8)+(8, 1)

for vector mesons if they are considered as antisymmetric tensors. In principle, one would expect that the chiral
representation under which the meson transforms would reflect itself on the observable properties of the meson.
However, this is not at all obvious. In the context of effective chiral Lagrangians for mesons a very convenient treatment
is that based on the non-linear realization of chiral symmetry [97]. (Let us remark that only the linear realization
is used in this work.) In this approach a field u is constructed out of M such that under chiral transformations

u → Ω†
Luh = h†uΩR (where u and h are unitary matrices) [85]. A field of the type LL such as the chiral current V µ

L

transforms as Ω†
LV

µ
L ΩL, and so belongs to the chiral representation (8,1). This field is represented in the non-linear

realization by the new field Ṽ µ
L = u†V µ

L u which transforms instead as h†Ṽ µ
L h. Likewise, the field M, of the type LR,

will be represented by M̃ = u†Mu†. This new field transforms as h†M̃h, that is, exactly in the same way as the chiral
currents or the vector or axial currents, etc. That was precisely the point of the non-linear realization, namely, all
fields in the same representation with respect to SU(NF )V will be represented by fields transforming in the same way
under general chiral transformations, regardless of their detailed chiral representation. Therefore, such detailed chiral
representation does not reflect on the properties of the meson, at least to the extend that effective chiral Lagrangians
are sufficient to describe them. This should not be surprising as it was already noted before that, e.g., the WT term
is only sensible to the isospin (or more generally, flavor) of the target.

C. The model: SU(6) invariant part

In view of the previous remarks, we introduce now a model for meson interaction, including the π octet and the ρ
nonet, with simultaneous chiral symmetry and spin-flavor symmetry, suitably broken.
The natural SU(6) extension of Eq. (1) from SU(3) to SU(6) is

LSU(6) =
f2
6

4
Tr
(

∂µU
†
6∂

µU6 +M6(U6 + U †
6 − 2)

)

, U6 = ei
√
2Φ6/f6 . (22)

U6 is a unitary 6 × 6 matrix that transforms under the linear realization of SU(6)L⊗SU(6)R. The Hermitian matrix

Φ6 is the meson field, in the 35 irreducible representation of SU(6), and f6 = f/
√
2, as shown in Appendix B of

Ref. [49]. The first term in LSU(6) preserves both chiral and spin-flavor symmetry. The second term breaks chiral
symmetry and possibly flavor symmetry. This is not the most general breaking and this issue will be discussed in the
next subsection. For the time being this term will be kept for illustration purposes with M6 = m6I6×6, with m6 a
common mass for all mesons belonging to the SU(6) 35 irreducible representation.
Expanding the previous Lagrangian up to O(Φ4

6) gives the interaction Lagrangian,

Lint
SU(6) =

1

12f2
6

Tr
(
[Φ6, ∂µΦ6][Φ6, ∂

µΦ6] +m6Φ
4
6

)
. (23)

The restriction of this Lagrangian to the SU(3) pseudoscalar 8 ⊗ 8 sector reproduces that given in Eq. (3)
(with a common mass for all pseudoscalars). The kinetic term in Eq. (23) amounts to a coupling of the type
[(35⊗ 35)35a

⊗ (35⊗ 35)35a
]
1
in the t−channel. That is, each meson pair, respecting Bose statistics, is coupled to

the antisymmetric SU(6) adjoint representation (35a) and the two resulting 35a’s couple into the singlet one to built
up an SU(6) invariant interaction. This mechanism is completely analogous to that in Eq. (3) for SU(3) and so it is
a natural extension of the WT chiral Lagrangian.
Φ6 is a dimension six matrix made of full meson fields, which depend on the space-time coordinates. A suitable
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choice for the Φ6 field is4

Φ6 = Pa
λa√
2
⊗ I2×2√

2
︸ ︷︷ ︸

ΦP

+Rak
λa√
2
⊗ σk√

2
+Wk

λ0√
2
⊗ σk√

2
︸ ︷︷ ︸

ΦV

, a = 1, . . . , 8, k = 1, 2, 3 (24)

with λa the Gell-Mann and ~σ the Pauli spin matrices, respectively, and λ0 =
√

2/3 I3×3 (In×n denotes the identity
matrix in the n dimensional space). Pa are the π,K, η fields, while Rak and Wk stand for the ρ−vector nonet fields,
considering explicitly the spin degrees of freedom. The annihilation part of the meson matrix [Φ6]

i
j is determined by

the operators M i
j . Regarding M as a matrix with respect to i and j, the convention is that the upper/lower index

acts as the first/second index of the matrix. M is traceless and transforms under SU(6) in the same way as the quark
operators

qiq̄j −
1

2NF
qmq̄mδij , i, j = 1, . . . 2NF , (25)

where NF is the number of flavors, three in this work.
We have denoted the contravariant and covariant spin-flavor quark and antiquark components

qi =












u ↑
d ↑
s ↑
u ↓
d ↓
s ↓












, q̄i =
(
ū ↓,−d̄ ↓,−s̄ ↓,−ū ↑, d̄ ↑, s̄ ↑

)
(26)

where qi (q̄i) annihilates
5 a quark (antiquark) with the spin-flavor i. For instance ū ↓ annihilates an antiquark with

flavor ū and Sz = −1/2. The corresponding Wick’s contractions of these operators read

Mk
l M

†i
j = δkj δ

i
l −

1

2NF
δijδ

k
l (27)

For the process depicted in Fig. 1, the Lagrangian of Eq. (23) provides the following amplitudes (HSU(6))

HSU(6) = HSU(6)
+ +HSU(6)

− (28)

with

HSU(6)
+ =

1

12f2
6

(

3s−
4∑

i=1

q2i

)

〈0|M i′

j′M
k′

l′ Ĝ+M
†i
j M †k

l |0〉 − m2
6

12f2
6

〈0|M i′

j′M
k′

l′ ĜMM †i
j M †k

l |0〉, (29)

HSU(6)
− =

u− t

4f2
6

(Gd − Gc) , (30)

where

Ĝ+ = :
1

2
Tr
(
[M †,M ]2

)
: , ĜM = : Tr

(
(M +M †)4) : , (31)

4 Matrices, Ai
j , in the dimension 6 space are constructed as a direct product of flavor and spin matrices. Thus, an SU(6) index i, should

be understood as i ≡ (α, σ), with α = 1, 2, 3 and σ = 1, 2 running over the (fundamental) flavor and spin quark degrees of freedom,
respectively.

5 Our convention is such that

(

d̄

ū

)

is a standard basis of SU(2), that is, d̄ = |1/2, 1/2〉 and ū = |1/2,−1/2〉. Thus, ū, d̄, s̄ is a standard

basis of the 3∗ representation of SU(3) with the Swart’s convention [90].
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and

〈0|M i′

j′M
k′

l′ Ĝ+M
†i
j M †k

l |0〉 = M i′

j′M
k′

l′ Tr
(
[M †,M ][M †,M ]

)
M †i

j M
†k
l

+M i′

j′M
k′

l′ Tr
(
[M †,M ][M †,M ]

)
M †i

j M
†k
l (32)

≡ Gd + Gc . (33)

In these expressions s = (q1 + q2)
2, t = (q1 − q3)

2, u = (q1 − q4)
2, |0〉 is the hadron vacuum state and : · · · : denotes

the normal product.
For a fully SU(6) symmetric theory and because of Bose statistics, the interaction must be symmetric under the

simultaneous exchange (i, j) ↔ (k, l) and q1 ↔ q2 or (i′, j′) ↔ (k′, l′) and q3 ↔ q4. This can be realized in two
different manners: i) being both symmetric in flavor and momentum spaces, or ii) being both antisymmetric in flavor

and momentum spaces. This corresponds to the decomposition HSU(6) = HSU(6)
+ +HSU(6)

− . The first of the amplitudes

turns out to be purely s−wave, while HSU(6)
− describes p−wave scattering when mesons are degenerate in mass.

In terms of SU(6) projectors, the above amplitudes read (see Appendix B for details)

HSU(6)
+ =

1

6f2

(

3s−
4∑

i=1

q2i

)

(−12P1 − 6P35s
− 2P189 + 2P405)

−m2
6

3f2
(23P1 + 10P35s

− 2P189 + 2P405) , (34)

HSU(6)
− = 3

u− t

f2
P35a

. (35)

We will not discuss in this work the p−wave part, and we will focus here on the s−wave amplitude. However, HSU(6)
−

will lead to a non-vanishing s−wave contribution for pseudoscalar-vector meson scattering when SU(6) symmetry
breaking mass terms are considered, since in that case (u− t) provides a non zero projection into s−wave. We return
to this point below.

D. SU(6) spin-flavor symmetry breaking effects

The SU(6) spin-flavor symmetry is severely broken in nature. Certainly it is mandatory to take into account mass
breaking effects by using different pseudoscalar and vector mesons masses. However, this cannot be done by just using
these masses in the kinematics of the amplitudes derived in the previous subsection as this would lead to flagrant
violations of the soft pion theorems in the PV → PV sector due to the large vector meson masses. Instead, the
proper mass terms have to be added to the Lagrangian to give different mass to pseudoscalars and vectors mesons
while preserving, or softly breaking, chiral symmetry. In addition, SU(2)spin invariance must also be maintained since
in the s-wave sector it is equivalent to angular momentum conservation.
To this end, we consider the following mass term (which replaces that in Eq. (22))

L(m)
SU(6) =

f2
6

4
Tr
(

M(U6 + U †
6 − 2)

)

+
f2
6

32
Tr
(

M′(~σ U6 ~σ U †
6 + ~σ U †

6 ~σ U6 − 6)
)

. (36)

Here the matrix M acts only in flavor space and is to be understood as M⊗ I2×2, and similarly for M′, so that
SU(2)spin invariance is preserved. Besides, these matrices should be diagonal in the isospin basis of Eq. (2) so that
charge is conserved. Also, ~σ stands for I3×3 ⊗ ~σ.

q
1 ,  j

i
. 

q ,  k. 

,  . 3 ,  . 4

l

q i’
j’

q k’
l’

2

FIG. 1: Diagrammatic representation of four meson scattering in SU(6).
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The first term in L(m)
SU(6) is fairly standard. It preserves spin-flavor symmetry when M is proportional to the identity

matrix and introduces a soft breaking of chiral symmetry when M is small. As it is shown below this term gives the
same mass to pseudoscalar and vector mesons multiplets. Note that terms of this type are sufficient to give different
mass to pseudoscalars (e.g. π and K) when SU(NF ) is embedded into SU(N ′

F ) (a larger number of flavors). They
are not sufficient however to tailor different P and V masses when SU(NF ) is embedded into SU(2NF ) (spin-flavor).

The second term in L(m)
SU(6) only gives mass to the vector mesons: indeed, if one would retain in U6 only the

pseudoscalar mesons, U6 would cancel with U †
6 (since these matrices would commute with ~σ) resulting in a cancellation

of the whole term. This implies that this term does not contain contributions of the form PP (pseudoscalar mass
terms) nor PPPP (purely pseudoscalar interaction). In addition, when M′ is proportional to the identity matrix
(i.e., exact flavor symmetry) chiral symmetry is also exactly maintained, because the chiral rotations of U6 commute
with ~σ. This guarantees that this term will produce the correct PV → PV contributions to ensure the fulfillment of
soft pion WT theorem [67, 68] even when the vector mesons masses are not themselves small.6

Expanding to order Φ2
6 to isolate the genuine mass terms involved, we find

Tr
(

M(U6 + U †
6 − 2)

)

= − 2

f2
6

Tr
(
MΦ2

6

)
+O(Φ4

6) = − 2

f2
6

Tr
(
M(Φ2

P +Φ2
V )
)
+O(Φ4

6),

Tr
(

M′(~σ U6 ~σ U †
6 − 3)

)

=
1

f2
6

Tr (M′ [~σ,Φ6] [~σ,Φ6]) +O(Φ3
6) = − 8

f2
6

Tr
(
M′ Φ2

V

)
+O(Φ3

6). (37)

Therefore

L(m)
SU(6) = −1

2
Tr
(
MΦ2

P

)
− 1

2
Tr
(
(M+M′)Φ2

V

)
+O(Φ4

6). (38)

As advertised, M is the only source of mass for the pseudoscalars and so M = diag(m2
π,m

2
π, 2m

2
K − m2

π) I2×2 is
the usual SU(3) mass breaking matrix. On the other hand, vector mesons pick up a contribution to their mass from
both M and M′.
For simplicity, in this exploratory work we will neglect the chiral breaking mass term (M = 0) and take a common

mass, mV , for all vector mesons (M′ = m2
V I3×3 I2×2). We use a vector meson nonet averaged mass value mV = 856

MeV. Let us stress that the simplifying choice M = 0, M′ = m2
V , refers only to the interaction terms derived from

the Lagrangian L(m)
SU(6). For the evaluation of the kinematical thresholds of different channels we use physical meson

masses.
With the abovementioned choice, picking up the terms ofO(Φ4

6) in L(m)
SU(6) yields the following four-meson interaction

terms

L(m; int)
SU(6) =

m2
V

8f2
Tr

(

Φ4
6 + ~σΦ2

6 ~σΦ
2
6 −

4

3
~σΦ6 ~σΦ3

6

)

. (39)

As noted above, this Lagrangian contains only PPV V and V V V V interactions and no PPPP ones. In addition,
the PPV V terms are consistent with soft pion (or soft Nambu-Goldstone boson) theorems.
Altogether, the amplitude, H, of the process depicted in Fig. 1 after projecting into s−wave and for massless

pseudoscalar bosons and equal mass vector mesons, takes the form

H =
(

HSU(6)
+ + δHSU(6)

+ +HSU(6)
−

)

M=0,M′=m2
V

=
1

6f2

(

3s−
4∑

i=1

q2i

)

Dkin +
m2

V

8f2
Dm +

1

2f2

m4
V

s
Da. (40)

Here Dkin = −12P1− 6P35s
− 2P189+2P405. It accounts for the first (kinetic) term in Eq. (34), which reduces to the

chirally invariant interaction proportional to Ĥ1 in Eq. (4). Dm is a matrix in spin-flavor space determined by the

interaction L(m; int)
SU(6) of Eq. (39). This matrix is identically zero in the PP → PP subspace and it cannot be expressed

as a sum of SU(6) projectors, since L(m; int)
SU(6) breaks spin-flavor symmetry, though it is of course Y IJ block diagonal.

The last matrix, Da, is just 6P35a
in the PV → PV sector and zero otherwise. HSU(6)

− of Eq. (35) has now a
nonvanishing contribution and once again, neglecting these terms would introduce a large violation of chiral symmetry,

6 Under a chiral transformation, the vector meson mass term (m2
V Tr(Φ2

V ))) will give rise to a PV V term which can only get canceled by
the corresponding variation of the PPV V contact term (recall δP ∼ O(1) and δV ∼ O(PV, V V )) to ensure that the whole Lagrangian
is invariant. Thus the contact PPV V piece is fixed by chiral symmetry.
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proportional to the vector meson mass. This comes about because (u− t) gives rise to non-zero s−wave contributions
for PV → PV scattering, once pseudoscalar-vector mass breaking is taken into account. Indeed, in the limit of
massless Nambu-Goldstone bosons and mass degenerated vector mesons, one finds for the PV sector (assuming that
the legs 1 and 3 in Fig. 1 are of type P and 2 and 4 of type V )

〈u− t〉l=0 =
m4

V

s
(PV → PV ). (41)

The same average vanishes for PP or V V sectors, since there Bose symmetry still applies.
Regarding the fulfillment of the relations Eqs. (15-19) in subsection II B, we can see that H of Eq. (40) reduces to

HPP→PP =
s

2f2
Dkin (42)

in the PP sector. On the other hand, in the PV sector, the relation

1

3
Dkin +

1

4
Dm +Da = 0 (PV → PV sector), (43)

guarantees that H(s) vanishes at threshold in this sector, and moreover

HPV →PV =
(s−m2

V )

2f2

(

Dkin −
m2

V

s
Da

)

. (44)

These expressions fulfill the relations Eqs. (15-19) by taking FR(s) = s− 1
2

∑4
i=1 q

2
i for the symmetric representations

and FR(s) = (s− 1
2

∑4
i=1 q

2
i )m

2
V /s for the antisymmetric ones.

We have also considered spin-flavor symmetry breaking effects due to the difference between pseudoscalar and vector
meson decay constants. The pseudoscalar meson decay constants, fP , are defined by

〈0|q̄1γµγ5q2(0)|P (p)〉 = −i
√
2fP pµ (45)

and vector meson decay constants, fV , by

〈0|q̄1γµq2(0)|V (p, ǫ)〉 =
√
2mV fV ǫ

µ, (46)

where q̄1, q2 are the quark fields, ǫµ is the polarization vector of the meson, and mV its mass. With the above
definitions, in the limit where either the quark or the antiquark that forms the meson becomes infinitely heavy and
thus spin symmetry turns out to be exact, QCD predicts fP = fV [99]. This guarantees that the normalizations of
the coupling constants in Eqs. (45) and (46) are consistent. For light mesons there exist sizable corrections to the
heavy quark symmetry-type relation fP = fV . For instance, the ratio fρ/fπ is of the order of 1.7. To take this into
account, in Eq. (40) we apply the prescription

1

f2
→ 1

(f1f2f3f4)
1/2

(47)

where the labels 1, 2, 3, 4 refer the four interacting mesons.
The meson decay constants (taken from Ref. [65]) and masses used throughout this work to compute the kinematical

thresholds and loop functions are compiled in Table II, while the coupled-channel matrices Dkin, Dm and Da can
be found in Tables XXI–LXI of Appendix A. We assume an ideal mixing in the vector meson sector, namely,

ω =
√

2
3ω1 +

1√
3
ω8 and φ =

√
2
3ω8 − 1√

3
ω1. The conventions of [90] are used throughout. Note that for the Y = 0

channels, G−parity is conserved,7 and that all Y = 0 states have well-defined G−parity except the K̄∗K and K∗K̄
states, but the combinations

(
K̄K∗ ±KK̄∗) /

√
2 are actually G−parity eigenstates with eigenvalues ±1. These states

will be denoted (K̄K∗)S and (K̄K∗)A, respectively.

A final remark is in order here. The new model introduced in this work is given by Lkin
SU(6) + L(m)

SU(6) (namely, the

first term in Eq. (22) and that in Eq. (36)). It implements the approximate spin-flavor chiral symmetry (as opposed

7 Recall that the G−parity operation can be defined through its action on an Y II3 eigenstate as G|Y II3〉 = χ(−1)Y/2+I | − Y II3〉, with
χ the charge conjugation of a neutral non-strange member of the SU(3) family.
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to the standard flavor chiral symmetry) advocated by Caldi and Pagels [79, 80]. In their approach vector mesons are

identified as dormant Nambu-Goldstone bosons. Lkin
SU(6) displays such extended chiral symmetry, while L(m)

SU(6) models

the pattern of symmetry breaking. Regarding this latter term, it should be noted that there is a large ambiguity in
choosing it. Being a contact term, it cannot contain PPPP contributions, due to chiral symmetry, and for the same
reason the terms PPV V are also fixed, as already noted. However, V V V V terms are not so constrained. One can

easily propose alternative forms for L(m)
SU(6) which would still be acceptable from general requirements but would yield

different V V V V interactions. For instance, any term of the form Tr
(

M~σU6~σU
†
6~σU6~σU

†
6 · · ·

)

, with the indices of the

~σ matrices contracted in any order, could be present in L(m)
SU(6). Our choice in Eq. (36) is just the simplest or minimal

one.8 Of course, such minimal choices are also present in any other model, often tied to some expansion parameter.
We have not yet identified a hierarchy to choose among the various available operators. Ultimately, the ambiguity
should be fixed by requiring consistency with the asymptotic behavior of QCD [95]. In what follows we will present
results obtained with the interaction H given in Eq. (40).

III. BS MESON-MESON SCATTERING AMPLITUDE

To describe the dynamics of resonances one needs to have exact elastic unitarity in coupled-channel. For that
purpose, we solve the coupled-channel BS equation and use the SU(6) broken potential defined above to construct its
interaction kernel. In this way in any Y IJ sector, the solution for the coupled-channel s−wave scattering amplitude,
T Y IJ , satisfies exact unitarity in coupled-channel. In the so called on-shell scheme [23, 24, 28, 36], T Y IJ is given by

T Y IJ (s) =
1

1− V Y IJ(s)GY IJ (s)
V Y IJ (s). (48)

V Y IJ (s) (a matrix in coupled-channel space) stands for the projection of the scattering amplitude, H, in the Y IJ
sector. GY IJ (s) is the loop function and is diagonal in the coupled-channel space. Suppressing the indices, it is
written for each channel as

G(s) = i

∫
d4q

(2π)4
1

q2 −m2
1

1

(P − q)2 −m2
2

(49)

where m1 and m2 are the masses of the mesons corresponding to the channel, for which we take physical values, and
Pµ is the total four momentum (P 2 = s). The loop function involves a logarithmic ultraviolet divergence which needs
to be dealt with. Extracting a suitable infinite constant, one can write

G(s) = Ḡ(s) +G((m1 +m2)
2). (50)

The finite function Ḡ(s) can be found in Eq. (A9) of Ref. [32], and it displays the unitarity right-hand cut of the
amplitude. On the other hand, the constant G((m1 +m2)

2) contains the logarithmic divergence. After renormalizing
using the dimensional regularization scheme, one finds

G(s = (m1 +m2)
2) =

1

16π2

(

a(µ) +
1

m1 +m2

{

m1 ln
m2

1

µ2
+m2 ln

m2
2

µ2

})

(51)

where µ is the scale of the dimensional regularization. Changes in the scale are reabsorbed in the subtraction constant
a(µ), so that the results remain scale independent.
We fix the Renormalization Scheme (RS) used in this work as follows. We adopt a reasonable scale µ = 1GeV and

we allow a(µ) to vary around the value −2 to best describe the known phenomenology in each Y IJ sector.9 Results,

8 As it turns out, the same term has been proposed by Caldi [98] as a Lorentz symmetry restoration correction.
9 One can instead use an ultraviolet hard cutoff Λ to renormalize the loop function. The relation between the subtraction constant a(µ),
at the scale µ, and Λ is

a(µ) = − 2

m1 +m2











m1 ln







Λ +
√

Λ2 +m2
1

µ






+m2 ln







Λ +
√

Λ2 +m2
2

µ

















(52)

For µ = 0.7 − 1 GeV, and assuming a cutoff of the same order of magnitude, −2 turns out to be a natural choice for the subtraction
constant a(µ).
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TABLE II: Values for the meson masses and decay constants used in the numerical calculations. All units are in MeV. Besides,
we use mV = 856MeV as parameter of the Lagrangian.

mπ 138.0 fπ 92.4

mK 495.7 fK 113.0

mη 547.5 fη 1.2× fπ

mρ 775.5 fρ 153

mK∗ 893.8 fK∗ 153

mω 782.7 fφ 163

mφ 1019.5 fω fρ

of course, have some dependence on the adopted RS, as they also depend on the assumed SU(6) breaking pattern

of the couplings (1/f2 → 1/ (f1f2f3f4)
1/2

). Indeed, both choices are not independent from each other. That is the
reason why we do not mind to scale, for instance, the πρ → πρ channel by 1/(fπfρ) instead of by 1/f2

π, as one will
naturally expect from chiral symmetry [97], since a change in the renormalization scale or in the subtraction constant
for this channel would easily cover the differences among these two choices for the couplings.
Since fV is significantly higher than fP , the adopted breaking pattern for the couplings guarantees that low-lying

JP = 0+ resonances, such as the f0(980) or the f0(600), described previously by unitarizing pseudoscalar-pseudoscalar
meson amplitudes [18, 19, 22, 30] are not much affected by the inclusion of vector-vector meson channels. It will be
shown below that the adopted RS successfully describes the main features of these positive parity scalar resonances.
Other on-shell renormalization schemes can be also adopted. For instance, one can take a certain scale, µ, such

that G(µ2) = 0 and the T Y IJ -amplitude reduces to the two-particle irreducible amplitude V Y IJ , i.e., T Y IJ(µ2) =
V Y IJ (µ2). This fixes the value of the subtraction constant G((m1 + m2)

2). This approach has been adopted in
[36, 41, 44, 46, 65] for meson-baryon s−wave scattering. The use of one RS or another is part of the uncertainties of
the present approach, though, they are smaller than those associated to our incomplete knowledge of the two-particle
irreducible amplitude V Y IJ . We do not expect large differences in the gross features of the picture that emerges,
though the exact position of the poles can of course be affected by modifying the RS. In the present work, the use of
the RS based on dimensional regularization, as outlined above, is preferable, because the same RS has been adopted
in previous studies of vector meson-vector meson (V V ) and pseudoscalar meson-vector meson (PV ) scattering within
the hidden gauge unitary approach [43, 69, 70]. This makes it easier to compare our results with those obtained in
these references.

IV. RESULTS AND DISCUSSION

In this section, we show the results obtained using the approach described above and compare them with those
obtained earlier within different schemes, and to data when possible.
The mass and widths of the dynamically generated resonances in each Y IJ sector are determined from the positions

of the poles, sR, in the Second Riemann Sheet (SRS) of the corresponding scattering amplitudes, namely sR =
M2

R − i MRΓR. For narrow resonances (ΓR ≪ MR),
√
sR ∼ MR − iΓR/2 constitutes a good approximation. In some

cases, we also find real poles in the First Riemann Sheet (FRS) of the amplitudes which correspond to bound states.
The coupling constants of each resonance to the various meson-meson states are obtained from the residues at the

pole, by matching the amplitudes to the expression

T Y IJ
ij (s) =

gigj
(s− sR)

, (53)

for energy values s close to the pole. The couplings, gi, are complex in general.
Since our starting point is the chiral dynamics governing the interaction among Nambu-Goldstone bosons, low

energy results should be similar to those previously obtained by unitarizing one loop ChPT amplitudes [18, 19, 30].
Because of the inclusion of vector meson degrees of freedom the scalar sector has an enlarged coupled-channel space in
our case. However, we expect small effects from these new degrees of freedom on the low-lying scalar resonances, since
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vector meson-vector meson thresholds are relatively far away from the low-energy region, where the pseudoscalar-
pseudoscalar interaction dominates.
To facilitate the discussion of our results, let us point out the main differences between the approach advocated

in the present work and the approaches followed in Ref. [43] for the pseudoscalar-vector sector, and in Refs. [69, 70]
for the vector-vector one. These latter works are based10 on the formalism of the hidden gauge interaction for vector
mesons [74, 75]. The main differences are:

1. Previous works [43, 69, 70] treat separately pseudoscalar-pseudoscalar, pseudoscalar-vector and vector-vector
meson sectors. However, for instance, vector-vector channels could modify the properties of some vector-axial
resonances, generated in Ref. [43], where only pseudoscalar-vector meson interactions are considered. Within
the formalism of the hidden gauge interaction for vector mesons there exist no s−wave PV → V V transition
potentials at tree level, and thus it is difficult to overcome this limitation in that scheme.

2. Pseudoscalar-vector channels [43]: Though, in a first view, the two-particle irreducible amplitude (V Y IJ) em-
ployed here and that used in [43] might look quite different, this is not really the case and they just differ at

order O(m2, ~k 2) (with m and kµ, the mass and the momentum of the Nambu-Goldstone boson) in the chiral
expansion, which is not fixed by the LO WT theorem [67, 68] that both approaches satisfy. Thus, in both
schemes, the potentials V Y IJ totally agree at LO O(kµ) and take the common value

V Y IJ = CY IJ mV k
0/f2 (54)

where the CY IJ coupled-channel matrices are given in [43]. The PV → PV amplitudes vanish in the soft
Nambu-Goldstone boson limit k0 → 0, as required by the LO WT theorem (see discussion in [85] for some more
details).

As a consequence, and apart from the influence of the vector meson-vector meson channels (see point below),
of the use here of massless Nambu-Goldstone bosons and physical decay constants in the computation of V Y IJ ,
we expect a rather good agreement with the results of Ref. [43] for the lowest lying axial resonances, which will
not be much affected by higher orders of the chiral expansion.

3. Vector-vector channels [69, 70]: In Refs. [69, 70], contact, box and t− and u−exchange contributions were
considered, within a scheme based on the hidden gauge interaction for vector mesons; the exchange and contact
terms being the dominant mechanisms. The exchange mechanism is closely related to the kinetic interaction
derived within our SU(6) symmetric scheme (Dkin). Indeed, one finds that by symmetrizing the interaction in
the ρρ channel in Table I of Ref. [69] and adding a factor 4/3, our SU(6) symmetric ρρ interaction is reproduced
(Dkin can be looked up in Appendix A). Note that in the ρρ channel SU(6) symmetry implies having symmetric
interactions under the exchange I ↔ J .

As we commented above, the kinetic interaction of our model is of the form [(35⊗ 35)35a
⊗ (35⊗ 35)35a

]
1
in

the t−channel. This can be regarded as the zero-range t−channel exchange of a full 35 irreducible representation,
carried by an octet of spin 0 and a nonet of spin 1 mesons of even parity. In Refs. [69, 70] these kinetic terms
are originated by the t−exchange of the time component of vector mesons, which has certain resemblance with
our zero-range exchange of 0+ mesons. Parity and angular momentum conservation also allow the exchange of
1+ and 2+ mesons. The latter exchange is missing in both approaches, and the former one is included within
our scheme, as required by SU(6) symmetry, while it is not present in the hidden gauge formalism adopted in
Refs. [69, 70]. We do not see a priori any compelling reason to favor any of the two approaches.

The contact terms in both approaches seem to be totally unrelated. We remind here the ambiguities mentioned
above associated to this term and that presumably its actual nature can only be fixed by the asymptotic behavior
of QCD.

4. We use fV 6= fP for those channels which involve vector mesons, while a universal 1/f2 coupling is assumed for
all channels in the previous works. As commented above, this is somehow related with the RS.

In what follows, we show results for the different Y IJ sectors, considering only nonnegative hypercharge values.

10 Strictly speaking, the study of axial-vector resonances carried out in Ref. [43] does not use the hidden gauge formalism. There, a contact
WT type Lagrangian is employed. However, the tree level amplitudes so obtained coincide with those deduced within the hidden gauge
formalism, neglecting q2/m2

V in the t−exchange contributions [101] and considering only the propagation of the time component of the
virtual vector mesons.
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TABLE III: Pole positions and modulus of the couplings |g| (MeV units) in the (Y, I, J) = (0, 0, 0) sector. IG(JPC) = 0+(0++).
The subtraction constant has been set to its default value, a = −2. Possible PDG counterparts: f0(600), f0(980), f0(1370),
and f0(1710).

√
sR ππ K̄K ηη ρρ ωω ωφ K̄∗K∗ φφ

(635,−202) 3516 432 333 7592 7909 117 7306 1850

(969, 0) 28 2983 2477 3393 2401 1627 4305 3831

(1350,−62) 553 3257 840 1336 2841 7074 10697 10647

(1723,−52) 43 853 3154 318 408 3400 2470 13698

TABLE IV: Pole positions and the modulus of the couplings (MeV units) in the (Y, I, J) = (0, 0, 0) sector when only block
diagonal pseudoscalar-pseudoscalar and vector-vector meson interactions are used. IG(JPC) = 0+(0++). Possible PDG coun-
terparts: f0(600), f0(980), f0(1370) and f0(1710).

√
sR ππ K̄K ηη ρρ ωω ωφ K̄∗K∗ φφ

(485,−156) 2807 600 86

(990,−6) 862 2746 2146

(1217, 0) 3637 3111 1378 12465 13130

(1981,−110) 848 1896 4984 3708 10747

A. Hypercharge 0, isospin 0 and spin 0

There are eight coupled channels, i.e., ππ, K̄K, ηη, ρρ, ωω, ωφ, K̄∗K∗ and φφ. In all cases the G−parity is
positive. Four poles are found on the complex plane of the SRS. These are compiled in Table III, where the modulus
of the couplings to the different channels (see Eq. (53)) are also given. The lowest two poles can be easily identified
with the f0(600) and f0(980) resonances. There are some differences with other works [22, 30] mainly because we
have neglected the pseudoscalar meson mass terms and have incorporated vector meson-vector meson channels. On
the other hand, the identification of the other two poles is not so direct, though it is tempting to associate them to
the f0(1370), and f0(1710) resonances. Thus, in our model the f0(1370) resonance has a sizeable coupling to the ρρ
channel which would lead to a four pion decay mode. For the decay of the resonance, the ρρ channel is more relevant
than the other ones (for instance the ωω or K̄∗K∗), thanks to the large width of the ρ−meson, which enhances the
decay of the resonance to the decay products of the ρρ pair. Indeed, the width of these f0 resonances will be enhanced
when new mechanisms constructed out of V PP p−wave couplings are considered (see for example Fig. 2) [70]. For
instance, since the pole that we have associated to the f0(1370) is placed below the two ρ meson threshold, it can
decay neither to this channel nor to those which are even heavier. Thus, the width of around 124MeV that can be
read off from Table III accounts only for the decay of the resonance into the open channels (ππ, K̄K, ηη). However,
the resonance can decay into two virtual ρ mesons, and each of them subsequently will decay into two pions, giving
rise to four and two pion decay modes through processes like those sketched in Fig. 2. These decays will increase the
width of the resonance [70]. Obvious modifications to these mechanisms should be considered, taking into account
the specific details of the dominant decays of the corresponding vector mesons, for other channels. For instance, since
the ω meson decays predominantly into three pions, the coupling of a resonance to two ω mesons will produce six or
four pion decays.
Following the findings of Ref. [70], a substantial increase of both the f0(1370) and f0(1710) widths with respect to

those deduced from the pole position is to be expected. On the other hand, the above mechanisms could explain a
large KK̄ decay mode of the f0(1710) resonance that in our model couples strongly to the K∗K̄∗ and the φφ channels.
This also supports the picture of Ref. [102], where it is guessed that the f0(1710) is dominantly ss̄. Besides, we predict
a sizeable decay of this resonance into ηη.
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The experimental f0(1500), on the other hand, has a mass of 1505 ± 6MeV and it is relatively narrow (Γ =
109 ± 7MeV) with dominant decays into two and four pion channels. Owing to the above discussion, it would be
difficult to assign it to our lowest pole, and thus it is a clear candidate to have a dominant glueball structure [103, 104].
This is also in agreement with the recent claims of Albaladejo and Oller [105], though it looks more difficult to reconcile
the picture that emerges from our analysis with this latter work in the case of the f0(1710) resonance. This is because
in Ref. [105], the f0(1710) resonance is identified as an unmixed glueball with a large η′η′ coupling, and this latter
channel is not included in our scheme. In Ref. [70], only the f0(1370) and f0(1710) resonances are found as well, and
in agreement with our findings, there the f0(1500) is not dynamically generated either. However, there appear some
differences with our results, since in this latter reference the f0(1370) is mainly ρρ, and the f0(1710) is mostly K∗K̄∗.
Such a distinction is not so clear in our scheme, where ωω, ωφ and φφ channels play a more significant role than in
the hidden gauge unitarity approach advocated in [70].
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FIG. 2: Resonance (R) decay to two (left) or four (right) pseudoscalar mesons (P , P ′, P ′′, P ′′′) through its s−wave (hexagon)
coupling to two vector mesons (V ,V ′) and the p−wave coupling (ovals) of these latter mesons to two pseudoscalar mesons.

In previous studies of pseudoscalar-pseudoscalar and vector-vector interactions, the first three channels and the
last five channels in Table III were considered separately (see for instance Refs. [18, 19] and [70], respectively). It is
interesting to check how the results change if they are also considered separately. That is, if all couplings that connect
the pseudoscalar-pseudoscalar and vector-vector meson sectors are set to zero. Comparing the results of Tables III
and IV, we observe that, though the number of resonances is the same in both cases (four) their positions and the
relative strengths of couplings to different channels have changed. The inclusion of the three pseudoscalar-pseudoscalar
channels has a large impact on the two poles of higher energy.

B. Hypercharge 0, isospin 0 and spin 1

In this sector (see Table V), there are two sets of quantum numbers: IG(JPC) equal 0−(1+−) and 0+(1++),
corresponding to those of the h1 and f1 resonances, respectively. Interactions turn out to be block diagonal since
strong interactions conserve G−parity and charge conjugation.
For 0−(1+−) there are five coupled channels, namely, ηφ, ηω, πρ, (K̄K∗)A = 1√

2
(K̄K∗−KK̄∗), K∗K̄∗. Three poles

are found in the complex plane, which can be tentatively associated to the h1(1170), h1(1380), and h1(1595). (These
are the only three 0−(1+−) resonances below 2 GeV quoted in the PDG [84].) Naturally, huge couplings are found
for the h1(1170), h1(1380) and h1(1595) resonances to the πρ, (K̄K∗)A and ηω and K̄∗K∗ channels, respectively.

TABLE V: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (0, 0, 1) sector. IG(JPC) = 0−(1+−)
[h′s] and 0+(1++) [f ′s]. We have slightly moved away from the choice a = −2 for the subtraction constants (see Eq. (51))
and have used a = −1.3 and a = −2.9 for the 0−(1+−) and 0+(1++) sub-sectors, respectively. Possible PDG counterparts:
h1(1170), h1(1380), h1(1595) and f1(1285).

√
sR ηφ ηω πρ (K̄K∗)A K̄∗K∗ ωφ (K̄K∗)S G

(1006,−85) 52 26 4362 1192 1029 −

(1373,−17) 2957 2484 1273 5322 1779 −

(1600,−67) 2414 3655 1006 1033 12869 −

(1286, 0) 4089 6790 +
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While the two latter resonances are omitted from the summary PDG table, and even the isospin and G−parity of the
h1(1380) is not quoted, the h1(1170) is firmly established experimentally. We predict for it a width smaller than that
quoted in the PDG, because within our model it comes out lighter than the experimental one and thus the available
phase space for πρ decay is much smaller.
The h1(1170) and h1(1380) obtained here are placed at similar positions and have similar couplings and widths

as those obtained in Ref. [43]. This is not surprising since, as already noted, at LO in the chiral expansion our
coupled-channel interaction for PV → PV scattering coincides with that used in Ref. [43].
Within our scheme, the vector-vector channel K∗K̄∗ plays an important role in the dynamics of the pole placed at

(1600,−67)MeV. Presumably, this is the reason why a third h1 pole was not found in Ref. [43], which misses the K∗K̄∗

channel. On the other hand, a K∗K̄∗ resonance is found in Ref. [70] located almost at threshold [
√
sR = (1802,−39)].

This pole was not identified in Ref. [70] with the h1(1595), because of the very different mass. It can be conjectured
that this pole corresponds to the one found in our approach at (1600,−67). The latter is strongly modified by the
inclusion of the ωη channel in the dynamics. If the picture presented by our model is correct, with the pole at
(1600,−67) assigned to h1(1595), this resonance cannot be generated just by ωη, as attempted in Ref. [43]. Indeed,
the diagonal ωη potential is zero in this sector. And also it cannot be described using only K∗K̄∗, as in [70], since
the mass turns out to be too high and furthermore its dominant decay mode, ωη, is ignored.
In the 0+(1++) subsector only one pole is found, at (1286, 0), quite similar to that reported in Ref. [43]. The PDG

quotes three f1 resonances below 2 GeV: f1(1285), f1(1420), and f1(1510). The f1(1285) has a mass of 1281.8± 0.6
MeV and a width of 24.3 ± 1.1 MeV; the f1(1420) has a mass of 1426.4± 0.9 MeV and a width of 54.9 ± 2.6 MeV;
the f1(1510) has a mass of 1518± 5 MeV and a width of 73 ± 25 MeV. The decay modes of f1(1420) and f1(1510)
are dominated by the (KK̄∗)S mode. On the other hand, because the f1(1285) is below the K̄K∗ threshold, it
cannot decay through this channel, though the branching fraction into K̄Kπ is about 10% and it might hint at a
non-negligible K̄K∗ component in its wave function.
Because of the position of the pole at (1286, 0), it makes sense to assign this pole to the f1(1285) resonance, as it

was done in Ref. [43]. The reason why no width is found for this resonance, while the PDG quotes 24 MeV for it, is
that there are other decay channels different to V P that are obviously not considered in our scheme [like 4π (33%),
ηππ (52%), or KK̄π (10%)11]. Nevertheless, the assignment of the pole to the f1(1420) resonance, whose dominant
decay is (KK̄∗)S and it is also placed close to threshold, cannot be completely discarded either.

TABLE VI: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (0, 0, 2) sector. IG(JPC) = 0+(2++).
In this subsector the value of −2.77 for the subtraction constant in the ρρ channel and −2.5 for the other ones have been used.
Possible PDG counterparts: f2(1270) and f2(1640).

√
sR ρρ ωω ωφ K̄∗K∗ φφ

(1289, 0) 22138 17793 3642 18385 5865

(1783,−19) 2235 1541 2846 5201 2427

C. Hypercharge 0, isospin 0 and spin 2

In this sector, there are five coupled channels: ρρ, ωω, ωφ, K∗K̄∗, and φφ, and we find two poles (see Table VI)
in the SRS/FRS of our amplitudes. Experimentally, many f2 resonances below 2GeV have been reported, including
f2(1270), f2(1430), f

′
2(1525), f2(1565), f2(1640), f2(1810), f2(1910), and f2(1950). Most of them [f2(1430), f2(1565),

f2(1640), f2(1810), and f2(1910)] have not been confirmed yet. It is tempting to associate the two f2 poles found
within our approach to the two lowest lying confirmed resonances f2(1270) and the f ′

2(1525). In the first case, the
mass agrees well with that quoted in the PDG, however experimentally the f2(1270) resonance is quite broad (Γ ∼ 185
MeV) while in our case, it appears as a bound state (pole in the FRS) of zero width. Contributions as those depicted
in Fig. 2 might provide a sizeable width to this pole. Besides there exist other mechanisms like d−wave ππ decays,
which could also be important in this case because the large available phase space. Those associated to the left
diagram of Fig. 2 are considered in Refs. [69, 70]. Regarding our identification of the f ′

2(1525) resonance, we find

11 This latter decay mode can be easily understood from the decay of the resonance to a virtual K̄K∗ pair.
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dominant couplings to the K∗K̄∗ and φφ channels, which will naturally account for the experimental dominant decay
mode into KK̄ of this resonance [84] through loop mechanisms (Fig. 2). However, the mass position disagrees much
more in this case, while its sizeable coupling in our approach to ρρ seems difficult to reconcile with its experimental
small branching fractions into ππ and ππππ. Thus, we have some reservation with this identification, and perhaps
it could also be possible to identify the pole with the resonances f2(1565) or f2(1640), which are placed closer to
the pole and have decay modes involving an even number of pions, or an ωω pair. Possibly further ingredients, like
d−wave KK̄ pairs, would also be needed to correctly describe the dynamics of the f ′

2(1525) resonance.
In Ref. [70] two states are also generated in this channel, and are associated with the f2(1270) and f ′

2(1525).
The real part of both poles agree remarkably well with the masses of these two resonances. This was achieved by
a suitable fine-tuning of the subtraction constants. A similar good agreement could not be achieved within our
scheme by fine-tuning of the subtraction constants. In [70], these two resonances appear mostly as ρρ and K̄∗K∗

bound states, respectively. In our case, these channels are still dominant but with a substantial contribution from
the subdominant channels. The hidden gauge interaction for vector mesons model used in [70] and our approach are
related for PV → PV scattering, thanks to chiral symmetry, but they are completely unrelated in the V V sector,
where we believe that the nature of the contact terms can only be unraveled by requiring consistency with the QCD
asymptotic behavior at high energies [95]. Besides, the V V interactions of our model are weaker than those deduced
in Ref. [70] due to the use of fV instead of the pion decay constant.

TABLE VII: Pole positions and modulus of the couplings in the (Y, I, J) = (0, 1, 0) sector (MeV units). The subtraction
constants a = −3.5 for the PP channels and a = −1 for the three V V ones have been used. IG(JPC) = 1−(0++). Possible
PDG counterparts: a0(980), a0(1450) and a0(2020).

√
sR ηπ K̄K ωρ φρ K̄∗K∗

(991,−46) 2906 3831 775 4185 5541

(1442,−5) 907 285 10898 677 3117

(1760,−12) 790 1241 667 5962 5753

D. Hypercharge 0, isospin 1 and spin 0

There are five coupled channels in this sector: πη, KK̄, ρω, ρφ and K∗K̄∗ and our model produces three poles
in the SRS of the amplitudes. These are compiled in Table VII. The lowest pole should correspond to the a0(980),
which has been obtained in all previous studies considering only pseudoscalar-pseudoscalar coupled-channel. In our
model, its couplings to the πη and KK̄ are large, in agreement with the results of earlier studies and with the data,
but it also presents large couplings to the heaviest channels, φρ and K̄∗K∗.
The pole at

√
sR = (1442,−5) can be associated to the a0(1450). Within our scheme, it can decay to πη and KK̄,

which is in agreement with the data. Its huge coupling to ωρ will give rise to a significant ωππ decay mode and to an
important enhancement of its width, thanks to the broad spectral function of the ρ resonance.
On the other hand, the PDG only reports two a0 resonances below 2GeV. Therefore, the third pole in this sector

at
√
sR = (1760,−12) cannot be associated, in principle, to any known state. Nevertheless, it is interesting to note

that in Ref. [70] an a0-like pole was found located close to the K∗K̄∗ threshold and with large couplings to K∗K̄∗

and φρ. On the other hand, a resonance a0(2020) has been reported in [106], with these quantum numbers around
2GeV (2025± 30 MeV), but extremely wide (330± 75 MeV). The large width of this state makes less meaningful the
difference between its mass and that of our pole, which might be then associated to this resonance. Still, it should be
noted that the a0(2020) resonance is not yet firmly established and needs further confirmation [84].

E. Hypercharge 0, isospin 1 and spin 1

There are two sets of quantum numbers in this sector: 1+(1+−) and 1−(1++), corresponding to those of b1 and a1
resonances. Our results for this channel are compiled in Table VIII.
In the 1+(1+−) subsector, two poles are found in the SRS: the lower one can be associated to the b1(1235).

The predicted mass, width and decay modes agree well with the data [ωπ (dominant), ρη (seen), 4π (< 50%) and
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TABLE VIII: Pole positions and modulus of the couplings (MeV units ) in the (Y, I, J) = (0, 1, 1) sector. IG(JPC) = 1+(1+−)
[b′s] and 1−(1++) [a′s]. A subtraction constant of a = −1.57 has been used for positive G−parity states. Possible PDG
counterparts: b1(1235), b1(1960), a1(1260), a1(1640).

√
sR K̄∗K∗ πφ πω ηρ ρρ (K̄K∗)S πρ ωρ (K̄K∗)A φρ G

(1234,−57) 4516 438 3398 900 9025 3165 +

(1642,−139) 10433 4214 912 3321 965 523 +

(1021,−251) 7988 7580 5284 929 −

(1568,−145) 679 1423 6314 9973 −

KK̄π (14%)]. This state has also been found in Refs. [37, 43], and this indicates that it mainly originates from the
pseudoscalar-vector interaction. The second b1 state is found at

√
sR = (1642,−139). It couples strongly to K∗K̄∗

and lacks a clear PDG counterpart yet. A b1 state is also found in Ref. [70] at ∼1700 MeV. It is tempting to associate
our second pole with the resonance b1(1960), though this state is not firmly established yet [106]. The b1(1960) turns
out to be also quite wide (Γ = 230 ± 50), as it was the case of the a0(2020) resonance above, which makes less
important the large difference existing between the masses. Moreover, the data suggest that b1(1960) has non-zero
overlaps with the πω and ηπω channels [107]. This is compatible with the features of our pole. (Note that the ηρ
coupling could lead to a non zero contribution to the ηπω decay mode.)
In the 1−(1++) subsector, also two poles are found in the SRS. It is tempting to associate them to the a1(1260)

and a1(1640), the only two a1 resonances below 2GeV reported in the PDG [84].
The mass and width of a1(1260) suffer from large uncertainties, being quoted in the PDG values of 1230± 40 MeV

and 250− 600 MeV, respectively. Its dominant decay modes are 3π and (K̄K∗)A. This is in total agreement with the
largest couplings of our lightest pole in this sector. In addition, the main properties of this pole are similar to those
of the pole found in the approach of Ref. [43].
The resonance a1(1640) is much worse established experimentally and it is not reported in the approach of Ref. [70].

Nevertheless, our second pole couples strongly to V V channels and its features fit well with those known for the
a1(1640) resonance.

TABLE IX: Pole positions and modulus of the couplings (MeV units ) in the (Y, I, J) = (0, 1, 2) sector. IG(JPC) = 1−(2++).
The subtraction constant has been set to a = −3.4. Possible PDG counterparts: a2(1320) and a2(1700).

√
sR ωρ φρ K̄∗K∗

(1228, 0) 11287 2637 6281

(1775,−6) 1454 3167 4362

F. Hypercharge 0, isospin 1 and spin 2

There are three coupled channels in this sector: K̄∗K∗, ωρ, and φρ, and we find two poles, one in the FRS and
a second one in the SRS of the amplitudes (see Table IX), which might be associated to the a2(1320) and a2(1700)
resonances. In our model, the bound state strongly couples to the ωρ channel, which would give rise to the observed
3π and ωππ decay modes of the a2(1320) thanks to the width of the virtual ρ meson. Furthermore, if the pole position
were closer to the experimental mass, the width would also increase. Fine-tuning of the subtraction constant did not
work to achieve a better agreement in the mass position.
Little is known about the a2(1700), but the assignment of our second pole with it might get supported by the

decays of this resonance into ωρ and KK̄ pairs. Indeed, this latter decay mode can be obtained from the decays
of the resonance to virtual φρ or K∗K̄∗ pairs, through loop mechanisms as those depicted in Fig. 2. The hidden
gauge interaction for vector mesons model used in [70] gives rise only to one pole, whose features corresponds to the



21

heaviest of the poles found here. As it is the case here, though its mass is close to that quoted in the PDG for the
a2(1700) resonance, it turns out to be much narrower than this resonance. This could be an indication of the fact
that either the identification of this pole with the a2(1700) resonance is incorrect or that other mechanisms, such as
coupled-channel d−wave dynamics, might play an important role in this case.

TABLE X: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (1, 1/2, 0) sector. I(JP ) = 1

2
(0+). The

subtraction constant has been set to a = −1.5 for the V V channels. Possible PDG counterparts: K∗
0 (800), K

∗
0 (1430) and

K∗
0 (1950).

√
sR Kπ ηK K∗ρ K∗ω K∗φ

(830,−170) 4446 1879 5868 2029 1805

(1428,−24) 1805 892 8007 10803 5556

(1787,−37) 45 2662 657 1107 12181

G. Hypercharge 1, isospin 1/2 and spin 0

In this sector there are five coupled channels: πK, ηK, ρK∗, ωK∗, and φK∗, and three poles are found in the SRS
of the amplitudes. The first one at

√
sR = (830,−170) can be associated to the K∗

0 (800). There is still a controversy
about the existence and the origin [108] of this broad resonance (Γ ∼ 550 MeV), being Kπ its dominant decay mode.
It is very similar to the f0(600), and hence it cannot be interpreted as a Breit-Wigner narrow resonance.
We identify the second pole at

√
sR = (1428,−24) with the K∗

0 (1430) resonance, despite being the latter one much
wider than the pole found in our scheme. The Kπ branching fraction for this resonance is 93% ± 10% [84]. The
pole generated in our scheme couples more than twice stronger to the Kπ channel than to the ηK one, which is also
open. However, the coupling to the K∗ρ channel is four times bigger and does not contribute to the width of 48 MeV
quoted in Table X because it is not open. Nevertheless, the resonance can decay into a virtual K∗ρ pair which will
significantly enhance the Kπ decay probability, thanks to the broad ρ and K∗ widths and the fact that the pole is
not placed too far from threshold (see left panel of Fig. 2).
In Ref. [70], where only V V−channels are considered, only one pole at (1643,−24) with a strong ρK∗ coupling was

found. The authors of [70] argue, although with reservations, that it might correspond to the K(1630) resonance.
We conjecture that with an adequate subtraction constant the pole found in that reference might be similar to our
second pole and thus it would rather correspond to the K∗

0 (1430) resonance.
The situation of the third pole is less clear. It would be tempting to associate this third pole at

√
sR = (1787,−37)

to the K(1630) (with yet undetermined JP [84]). Our pole is wider than the K(1630) resonance, whose reported
width is compatible with zero. This could be explained because our pole is located above the K∗ω threshold and
experimentally it is below this threshold although close to it. Note that this channel gives rise to a decay mode
Kππ, as reported in the PDG. Nevertheless, we believe that such identification would probably be incorrect, since the
biggest couplings of the pole found here are those corresponding to the ηK and K∗φ channels. The first of these two
channels is open, giving rise to a sizeable width difficult to reconcile with the narrow width quoted in the PDG for the
K(1630). Besides, the huge K∗φ coupling will lead to a Kπ decay mode, through the loop mechanisms sketched in
Fig. 2, while the decay mode observed in the PDG is Kππ. Note that the pole at

√
sR = (1787,−37) also couples to

the K∗ρ channel and that it will also contribute to the Kπ decay mode. This suggests to identify the pole found here
with the wide K∗

0 (1950) resonance, for which the decay mode observed in the PDG is Kπ. Moreover, its large width
201± 90 MeV [84]) make less meaningful the difference between its mass 1945± 22 and that of our pole. However, it
should be pointed out that the K∗

0 (1950) resonance is not firmly established yet and needs further confirmation [84].

H. Hypercharge 1, isospin 1/2 and spin 1

In this sector there are eight coupled channels: K∗π, Kρ, Kω, K∗η, Kφ, K∗ρ, K∗ω, K∗φ, and four poles are found
on the SRS.
In the PDG there appear three resonances below 2 GeV with these quantum numbers, namely K1(1270), K1(1400),

K1(1650), while here we found four poles.
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TABLE XI: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (1, 1/2, 1) sector. I(JP ) = 1

2
(1+). The

subtraction constants has been set to a = −2.5 for the PV channels and to a = −1.7 for the three V V ones. Possible PDG
counterparts: K1(1270), K1(...), K1(1400), K1(1650).

√
sR πK∗ Kρ Kω ηK∗ Kφ K∗ρ K∗ω K∗φ

(1188,−64) 5616 3703 1959 1988 1860 4405 2824 2669

(1250,−31) 3910 5267 2516 3612 1665 3225 6311 2023

(1414,−66) 798 3326 3030 1169 1668 9866 2225 4373

(1665,−95) 1358 1166 922 3650 3799 2880 3017 10641

In Ref. [43] two poles (
√
sR = (1112,−64) MeV and

√
sR = (1216,−4) MeV) were reported, using only PV → PV

interaction. An additional pole was found at
√
sR = (1737,−82) MeV in Ref. [70], using only the V V → V V sector.

The work of Roca et al. [43] was revisited in Ref. [109]. In this latter reference, the double pole structure of the
K1(1270), uncovered in [43], is further confirmed. Let us summarize here some of the most relevant findings of
Ref. [109]. There, one pole is found at ∼ 1200 MeV with a width of ∼ 250 MeV and the other is found at ∼ 1280 MeV
with a width of ∼ 150 MeV. The lower pole couples more to the K∗π channel and the higher pole couples dominantly
to the Kρ channel. The peak in the Kππ mass distribution in the WA3 data [110] on K−p → K−π+π−p is explained
in [109] as a superposition of two poles, but in the K∗π channel the lower pole dominates and in the ρK channel, the
higher pole gives the biggest contribution. Finally, it is argued in [109] that different reaction mechanisms may prefer
different channels and this would explain the different invariant mass distributions seen in various experiments.
The results compiled in Table XI, show two poles around 1.2 GeV which correspond to those reported in Ref. [109],

though the couplings turn out to be somehow different. This is partially due to the inclusion here of the V V channels.
When those channels are switched off, the agreement improves, but there still remain some differences between the
couplings obtained in both approaches, specially on the strength of the K∗η coupling for the lightest resonance. This
can be attributed, at this stage, to the approximation mP = 0 used here when computing the potential. Our scheme
implements an extra SU(6) symmetry breaking pattern induced by the use of different pseudoscalar and vector decay
constants (fP 6= fV ), however, in Ref. [109] the WA3 K−p → K−π+π−p data were successfully fitted with a value of
f2 ∼ (115MeV)2, which numerically is rather similar to fP fV used here (see Table II). On the other hand, taking
into account the finite ρ and K∗ widths in the intermediate loops will increase the imaginary parts of the poles,
specially that of the higher pole which has a large coupling to the ρK channel. This will then bring its width close
to ∼ 150MeV, as found in in Ref. [109]. Thus, our findings here reinforce the double pole picture for the K1(1270)
resonance predicted in Refs. [43, 109]. It is also noteworthy that Ref. [37] did not find this double pole structure.
We move now to the third of the poles found here [

√
sR = (1414,−66) MeV ], which has large K∗π, Kρ, Kω, K∗φ

and specially K∗ρ couplings. Given its mass and width, it can be naturally associated to the K1(1400) resonance.
However in the PDG, branching fractions of (94 ± 6)%, (3 ± 3)% and (1 ± 1)%, for the K∗π, Kρ and Kω modes,
respectively, are quoted for this resonance. The couplings shown in Table XI cannot be easily reconciled with the
above fractions. Refs. [43, 109] did not find the K1(1400) resonance, while in Ref. [37] a broad bump in the speed plot
was associated to it. In the V V−work of Ref. [70], a pole at

√
sR = (1737,−82) MeV is reported with a dominant

ρK∗ coupling. Indeed, when the PV − V V interferences are switched off, we find the two K1(1270) poles in the PV
sector and a third pole in the V V sector with a large ρK∗ coupling, whose position depends strongly on the value of
the subtraction constant. Our conjecture is that it is precisely this pole, which manifests itself as a ρK∗ bound or
resonant state when only V V interactions are considered, the one that moves down to

√
sR = (1414,−66) when the

PV channels are also included.
Here, we envisage two different possibilities:

(i) To identify the
√
sR = (1414,−66) pole with the K1(1400) resonance, despite the PDG branching fractions

quoted above. It is worth stressing here that the properties quoted in the PDG obtained from the WA3 data
analysis rely upon considering only one pole for the K1(1270). The reanalysis of the WA3 data carried out
in [109], where the double K1(1270) pole structure is taken into account and the totality of the PV channels
studied here are considered, is also inconsistent with the PDG K1(1400) branching fractions, being the Kρ
mode almost comparable to the K∗π one (see Fig. 7 of this reference) and certainly it is not around 30 times
smaller. On the other hand, there exists another ingredient which should be considered. Our state has a huge
K∗ρ coupling, which will provide a Kπππ signature and that of course will also contribute to the inclusive WA3
K−p → K−π+π−p reaction. This latter mechanism was considered neither in the original analysis of Ref. [110]
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nor in the better theoretical founded re-analysis of Ref. [109].

Within this scenario, the fourth pole at
√
sR = (1665,−95) shown in Table XI, could be assigned to the K1(1650)

with a mass of 1650 ± 50 MeV and a width of 150 ± 50 [84]. The only decay channels observed are Kππ and
Kφ, which could be easily associated to the large Kφ coupling of the pole together with its sizeable K∗π and
Kρ components (see Table XI). This pole appears due to the interplay between the K∗φ and Kφ channels,
similarly as it was discussed earlier in the case of the h1(1595), and indeed it disappears when only the V V
sector is considered. In Ref. [70], the above mentioned

√
sR = (1737,−82) pole was tentatively assigned to the

K1(1650) resonance despite the fact that its large ρK∗ coupling is difficult to accommodate with the K1(1650)
known decays.

Nevertheless, this is still a questionable scenario, since the couplings quoted in Table XI, for the pole at
(1414,−66), indicate that its Kρ decay mode is much larger than the K∗π, and this is difficult to reconcile
even with the results of the re-analysis of Ref. [109].

(ii) Alternatively, the subtraction constants could be fine-tuned so that the third pole is pushed up in energy and
thus it could be associated to the K1(1650) (see for instance Table XII). Properties of the poles, other than
the mass and width, are not much affected by the fine-tuning, and one still gets the two pole structure for the
K1(1270) resonance. In this scenario no pole is assigned to the K1(1400), which then will not be dynamically
generated, as advocated in the picture of Refs. [43, 70, 109]. However, the assignment of the third pole to the
K1(1650) would suffer from the problems mentioned above in the case of the

√
sR = (1737,−82) resonance

found in Ref. [70]. In addition, a further K1 above 1.8 GeV and not included in the PDG, will be predicted
with a large Kφ decay mode.

TABLE XII: Same as Table XI [I(JP ) = 1

2
(1+)], but using subtraction constants a = −3.1 for the PV channels and a = −1.0

for the three V V ones. Possible PDG counterparts: K1(1270), K1(...), K1(1650), K1(...).

√
sR πK∗ Kρ Kω ηK∗ Kφ K∗ρ K∗ω K∗φ

(1169,−46) 4595 3643 1862 1873 1484 2468 2328 1418

(1266,−44) 4539 5789 2797 4504 2870 1077 7956 1837

(1576,−43) 888 1868 2508 796 682 9874 1364 3366

(1823,−61) 474 154 221 2636 3105 770 1295 11756

TABLE XIII: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (1, 1/2, 2) sector. I(JP ) = 1

2
(2+).

Possible PDG counterparts: K∗
2 (1430).

√
sR K∗ρ K∗ω K∗φ

(1708,−156) 7227 2834 2299

I. Hypercharge 1, isospin 1/2 and spin 2

In this sector, a pole is found in the SRS of the amplitudes. In the PDG, two K∗
2 resonances below 2 GeV

[K∗
2 (1430) and K∗

2 (1980)] are reported, though only the lightest one is firmly established. The K∗
2 (1430) has a mass

of 1429 ± 1.4MeV and a width of 104 ± 4MeV; the second resonance has a mass of 1973 ± 26 MeV and a width
of 373 ± 70 MeV. It is not clear to which one to associate the state we find. The subtraction constants cannot be
fine-tuned to achieve the mass of the pole to lie much closer to 1.43 GeV than in Table XIII. Nevertheless, we believe
that the pole found here might correspond to the K∗

2 (1430) and its nature is somehow related to those of the f2(1270)
and f ′

2(1525). In both cases, an important influence of d−wave interactions is to be expected. Indeed in the case of
the K∗

2 (1430), the PDG branching fractions are around 50%, 25%, 9% and 3% for the d−wave modes Kπ, K∗π, Kρ
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and Kω, respectively. In addition, the branching fraction of the K∗ππ channel is only about 13%. This latter decay
mode looks like the only one more or less related to the dynamics included within our model, thanks to the dominant
coupling K∗ρ of the pole displayed in Table XIII. This would explain why our model does not describe properly the
mass and the width of the K∗

2 (1430). From this point of view, what is somewhat more surprising is the fact that our
scheme were able to describe the mass of the f2(1270) at all. However, there is here a distinctive feature: the possible
influence of the d−wave pseudoscalar-vector meson K∗π channel, which lies closer to the resonance mass than the
pseudoscalar-pseudoscalar channels. Notice that the equivalent channel in the case of f2(1270) would be πρ, but it is
not allowed by G−parity conservation.
The approach of Ref. [70] for V V → V V scattering produces a resonance in this sector, with mass fine-tuned to

1430MeV, even if all type d−wave interactions are also ignored.

J. Exotics

Exotics refers here to meson states with quantum numbers that cannot be formed by a qq̄ pair. Quantum numbers
with I ≥ 3/2 or |Y | = 2 are exotic. Our model produces five poles on the complex plane with the following quantum
numbers: 2+(0++) with Y = 0, 3/2(0+) and 3/2(1+) with Y = 1, and 0(1+) and 1(0+) with Y = 2. Remarkably,
no exotic state was reported in Ref. [70]. This is a direct consequence of the different dynamics implicit in both
approaches. Future experiments may be needed to distinguish between these two schemes.

TABLE XIV: Poles positions and modulus of the couplings (MeV units) in the (Y, I, J) = (0, 2, 0) sector. The subtraction
constant has been set to a = −1.5. IG(JPC) = 2+(0++) . Possible PDG counterparts: X(1420).

√
sR ππ ρρ

(1419,−54) 2719 10069

1. Hypercharge 0, isospin 2 and spin 0

In this sector, a pole is found that, given its mass and width, can be naturally associated to the X(1420) reso-
nance (see Table XIV). This resonance needs further confirmation and its current evidence comes from a statistical
indication [111] for a π+π+ resonant state in the n̄p → π+π+π− annihilation reaction with data collected by the
OBELIX experiment. Within our scheme, the pole is essentially a ρρ bound state with a small coupling to the ππ
channel that moves the pole to the SRS. The fact that the strength of the coupling to π+π+ is not large might explain
why the resonance distorts weakly the spectrum of the outgoing pair of positive pions in the OBELIX data. Within
our scheme, the ρρ → ρρ amplitude is symmetric under I ↔ J exchange. For Dkin this comes as a result of SU(6)
symmetry. On the other hand, the interaction Dm is a contact term and this ensures the invariance under I ↔ J .12

As a consequence our ρρ potential in this sector (I = 2, J = 0) is the same as that in the I = 0, J = 2 one. BS
amplitudes in both sectors will become different because of coupled-channel and renormalization effects. Nevertheless,
we expect the X(1420) to be the counterpart of the f2(1270), which appeared mostly as a ρρ J = 2 isoscalar bound
state. This situation is distinctively different in the hidden gauge interaction model used of Ref. [70], where near
threshold, the ρρ interaction in the I = 2, J = 0 sector becomes repulsive and five times smaller, in absolute value,
than that in the I = 0, J = 2 sector [69]. Indeed, while in the latter sector the ρρ interaction is attractive and gives
rise to the f2(1270) resonance, the model of Ref. [69, 70] does not provide any (I = 2, J = 0) resonance. However,
it is found a dip in the ρρ amplitude squared in this latter work. There, it is suggested that such a dip in the ρρ
amplitude might lead to a bump in π+π+ production.
The ππ diagonal potential is repulsive in this sector, however, the ππ → ρρ transition potential leads to an

interaction more attractive than that deduced from the diagonal ρρ potential. Indeed, from Tables XXVII and XLVI,
one finds eigenvalues ±2 for Dkin and 8/3, −8 for Dm (the two matrices entering in the kernel potential) while the

12 Indeed, the most general contact interaction in the ρρ sector is of the form Lint = g1ρaiρaiρbjρbj + g2ρaiρajρbiρbj which is symmetric
under exchange of spin and isospin labels.
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ρρ diagonal matrix elements are −1 and −16/3, respectively. [Notice that our conventions are such that negative
diagonal matrix elements, or eigenvalues, of Dkin, Dm and Da correspond to attractive interactions.]

TABLE XV: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (1, 3/2, 0) sector. IG(JP ) = 3

2
(0+).

√
sR Kπ K∗ρ

(1433,−70) 3242 10962

TABLE XVI: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (2, 1, 0) sector. I(JP ) = 1(0+).

√
sR KK K∗K∗

(1564,−66) 3484 11593

2. Hypercharge 1, isospin 3/2 and spin 0 and hypercharge 2, isospin 1 and spin 0

The matrices Dkin and Dm are the same in both sectors, and identical to those appearing in (Y, I, J) = (0, 2, 0).
Thus, the two resonances displayed in Tables XV and XVI belong to the same multiplet of scalars that the resonance
X(1420), and masses and widths are similar. We will come back to this point below.

TABLE XVII: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (1, 3/2, 1) sector. I(JP ) = 3

2
(1+).

√
sR πK∗ Kρ K∗ρ

(1499,−127) 3791 3699 8513

3. Hypercharge 1, isospin 3/2 and spin 1 and hypercharge 2, isospin 0 and spin 1

We find one pole in each sector (see Tables XVII and XVIII). Masses and widths of these two resonances are quite
similar and we will argue below that they belong to the same axial vector multiplet.

4. Hypercharge 0, isospin 2 and spin 1 and 2, hypercharge 1, isospin 3/2 and spin 2, and hypercharge 2, isospin 1 and spin 1
and 2

The interaction in these five sectors is repulsive and they present no poles.

V. SUMMARY AND CONCLUSIONS

Tables XIX and XX compile the different poles found within the present approach. It must be observed that the
widths obtained are only a first approximation and they could receive substantial corrections in some cases. This is
because of the following reasons. First, the only decay channels considered are PP , PV and V V s-wave pairs. Second,
the widths of the vector mesons have been neglected in their propagators in the loop functions. The effect might be
particularly important for the ρ and the K∗ resonances. It is to be expected that this mechanism will enhance the
width of the resonances with a very small impact on the masses [43]. The same mechanism should also introduce
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TABLE XVIII: Pole positions and modulus of the couplings (MeV units) in the (Y, I, J) = (2, 0, 1) sector. I(JP ) = 0(1+).

√
sR KK∗ K∗K∗

(1608,−114) 5614 9303

contributions of the type displayed in Fig. 2. Such contributions have appeared repeatedly during the discussion of
our results.
SU(6) symmetry of our approach has been explicitly broken to account for physical masses and decay constants,

and also when the amplitudes have been renormalized. Nevertheless, the underlying SU(6) symmetry is still present
and serves to organize the set of even parity meson resonances found in this work, and compiled in Tables XIX and
XX.
Spin-flavor symmetry has been used to guide the construction of the s−wave interactions among the members of

the SU(6) 35 multiplet. The matrix Dkin that appears in the kinetic term of the amplitudes can be expressed as

Dkin = −12P1 − 6P35s
− 2P189 + 2P405. (55)

Therefore, this interaction is (moderately) repulsive in the 405 representation and attractive in the other representa-
tions. To the extent that Dkin is the dominant term, this favors the existence of up to 225 (1+35+189) states. (This
counts all states of spin and isospin as different, not only multiplets. In terms of JP IGY states, this number is 45.)
The irreducible representations (irreps) of SU(6) can be reduced in terms of irreps of SU(3)⊗SU(2). In this way, the
content of the SU(6) 1,35s,189 irreps is as follows

1 = 11,

35 = 81 ⊕ 83 ⊕ 13,

189 = 271 ⊕ 81 ⊕ 11 ⊕ 103 ⊕ 10∗3 ⊕ 83 ⊕ 83 ⊕ 85 ⊕ 15, (56)

where the subindex refers to 2J + 1, so e.g., 10∗3 stands for the representation 10∗ of SU(3) with J = 1. Further, the
(Y, I) content of the SU(3) irreps is as follows

1 = (0, 0),

8 = (±1, 1/2), (0, 1), (0, 0),

10⊕ 10∗ = (±1, 3/2), (0, 1), (0, 1), (±1, 1/2), (±2, 0),

27 = (±2, 1), (±1, 3/2), (±1, 1/2), (0, 2), (0, 1), (0, 0). (57)

The gross features of the states reported in Tables XIX and XX follow the above decomposition based on SU(6)
multiplets. This picture is somewhat modified by the effect of the terms added to the kinetic contribution of the
Hamiltonian (see Eq. (40)), namely, Dm, which is mainly attractive and Da, which is repulsive. As mentioned, the use
of different vector and pseudoscalar meson masses and decay constants, and the used subtraction constants, which in
some cases have been fine-tuned to better reproduce the experimental (PDG) resonances, produce also a deviation
from the SU(6) pattern.
In Table I, the poles found in this work (Tables XIX and XX) are classified in terms of the above SU(6) and

SU(3)⊗SU(2) irreps. Several comments are in order here. First, it should be stressed that there will be mixings
between states with the same JP IGY quantum numbers but belonging to different SU(6) and/or SU(3) multiplets,
since these symmetries are broken both within our approach and in nature. These mixings have not been considered
when classifying the states in Table I. Some comments are also pertinent regarding each spin-parity sector:

(i) JP = 0+: As can be seen in Table I, the poles found here closely follow the pattern determined by the spin-
flavor SU(6) symmetry, except for the absence of the singlet state associated to the 189 SU(6) irrep. The
attractive interaction in this irrep is weak. We have checked that if the SU(6) symmetry breaking contact term
(Dm) is switched off a new f0 resonance (with a mass close to 1.9 GeV) would be generated in our calculation,
corresponding to this 11 missing state. On the other hand, the SU(6) pattern is also accurate when describing
the PDG scalar resonances compiled in Table I. This fact has two consequences. First, it increases the credibility
of our predictions on the existence of two exotic states in the region 1.4–1.6 GeV, belonging to the SU(3) 27 irrep
included in the SU(6) 189, while giving further theoretical support on the reliability of other resonances, not
yet firmly established, as for example the a0(2020) or the exotic isotensor X(1420) state. Second, by inspection
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TABLE XIX: Poles having non exotic quantum numbers found in this work and possible PDG counterparts. Units are given
in MeV. Those resonances marked with † need to be confirmed. A question mark symbol expresses our reservations on the
assignment.

(Y, I, J) IG(JPC) This model PDG [84]

Pole position (
√
sR) Name Mass Width

(0, 0, 0) 0+(0++) (635,−202) f0(600) 400 ∼ 1200 600 ∼ 1000

0+(0++) (969, 0) f0(980) 980± 10 40 ∼ 100

0+(0++) (1350,−62) f0(1370) 1200 ∼ 1500 200 ∼ 500

0+(0++) (1723,−52) f0(1710) 1720± 6 135 ± 8

(0, 0, 1) 0−(1+−) (1006,−85) h1(1170) 1170± 20 360± 40

0−(1+−) (1373,−17) h1(1380)
† 1386± 19 91± 30

0−(1+−) (1600,−67) h1(1595)
† 1594+18

−60 384+90

−120

0+(1++) (1286, 0) f1(1285) 1281.8 ± 0.8 24.3± 1.1

(0, 0, 2) 0+(2++) (1289, 0) f2(1270) 1275.1 ± 1.2 185.1+2.9
−2.4

0+(2++) (1783,−19) f2(1640)
† or f ′

2(1525) 1639± 6 99+60
−40

or f2(1430)
† or f2(1565)

†, · · ·

(0, 1, 0) 1−(0++) (991,−46) a0(980) 980± 20 50 ∼ 100

1−(0++) (1442,−5) a0(1450) 1474± 19 265± 13

1−(0++) (1760,−12) a0(2020)
† ? 2025± 30 330± 75

(0, 1, 1) 1+(1+−) (1234,−57) b1(1235) 1229.5 ± 3.2 142 ± 9

1+(1+−) (1642,−139) b1(1960)
† ? 1960± 35 230± 50

1−(1++) (1021,−251) a1(1260) 1230± 40 250 ∼ 600

1−(1++) (1568,−145) a1(1640)
† 1647± 22 254± 27

(0, 1, 2) 1−(2++) (1228, 0) a2(1320) 1318.3 ± 0.6 107 ± 5

1−(2++) (1775,−6) a2(1700)
† 1732± 16 194± 40

(1, 1/2, 0) 1/2(0+) (830,−170) K∗
0 (800)

† 672± 40 550± 34

1/2(0+) (1428,−24) K∗
0 (1430) 1425± 50 270± 80

1/2(0+) (1787,−37) K∗
0 (1950)

† 1945± 22 201± 90

(1, 1/2, 1) 1/2(1+) (1188,−64) K1(1270) 1272± 7 90± 20

1/2(1+) (1250,−31) K1(...)

1/2(1+) (1414,−66) K1(1400) ? 1403± 7 174± 13

1/2(1+) (1665,−95) K1(1650)
† ? 1650± 50 150± 50

(1, 1/2, 2) 1/2(2+) (1708,−156) K∗
2 (1430) ? 1429 ± 1.4 104 ± 4
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TABLE XX: Poles with exotic quantum numbers found in this work and possible PDG counterparts. Units are given in MeV.
Those resonances marked with † need to be confirmed.

(Y, I, J) IG(JPC) This model PDG [84]

Pole position (
√
sR) Name Mass Width

(0, 2, 0) 2+(0++) (1419,−54) X(1420)† 1420± 20 160± 10

(1, 3/2, 0) 3/2(0+) (1433,−70)

(2, 1, 0) 1(0+) (1564,−66)

(1, 3/2, 1) 3/2(1+) (1499,−127)

(2, 0, 1) 0(1+) (1608,−114)

of the resonances with these quantum numbers reported in the PDG and with masses below 2 GeV, it can
be noted that there exists just one well established resonance that does not fit within the SU(6) classification
pattern assumed in Table I.13 This is the f0(1500) resonance, for which a glueball picture has been suggested
by several authors [103, 104]. Our result would then be in support of such picture.

(ii) JP = 1+: Here the effects of the SU(6) breaking terms Dm and Dm terms turn out to be important. There are
two types of channels, namely, PV and V V mesons coupled to total spin 1.

The PV → PV amplitudes are constrained by the LO WT theorem (see Eq. (54)) and give rise to the states
of the multiplets 83 and 13 of the SU(6) 35s irrep and to those of a further SU(3) octet (8a3) of the SU(6) 189.
Note that the dynamics of the states of this latter multiplet is strongly influenced by the SU(6) breaking terms
mentioned above. Our results for those multiplets are in good agreement with those previously obtained in
Ref. [43], which among others include the prediction of the existence of a second K1(1270) resonance [109].

On the other hand the simultaneous consideration of PV and V V channels make the present approach different
from that followed in Ref. [43], and has allowed us to dynamically generate also the h1(1595) resonance. The
interference PV → V V amplitudes turn out to play a crucial role in producing this state, and that is presumably
the reason why it is not generated either in the V V → V V study carried out in Ref. [70] using the formalism
of the hidden gauge interaction for vector mesons. Possibly, the situation is similar for the K1(1650) state and
thus we end up with a clearer SU(6) pattern, which is also followed to some extent in nature.

In this sector, we also predict two exotic states belonging to the 10 and 10∗ irreps. On the other hand, we have
verified that the missing b1 pole in the symmetric octet of the SU(6) 189 would appear if the SU(6) symmetry
were restored.

To finish the discussion of this sector, we would like to point out that below 2 GeV there is only one firmly
established axial vector resonance that does not fit in the symmetry pattern sketched in Table I: It is the
f1(1420), and similarly to the previous discussion for the f0(1500) resonance, this might hint at the possible
existence of gluon components in its wave-function. Indeed arguments favoring the f1(1420) being a hybrid qq̄g
meson have been put forward by Ishida and collaborators [112].

(iii) JP = 2+: In this sector is where the SU(6) pattern works worst. This is because the SU(6) symmetry kinetic
term becomes less dominant when compared to V V interaction contact term generated as a result of giving mass
to the vector mesons. Moreover, we must stress here, once more, the little control that we have over this term.
Yet, the interaction in the SU(6) 189 irrep associated to Dkin is relatively weak. Thus all results displayed in
Table I for this sector must be understood by actively considering the interplay between Dkin and Dm. The
first remark is that if the contact term is switched off, the pole associated to the f2(1270) moves up in mass
by more than 200 MeV and the a2(1320) resonance disappears. Actually, in each Y I subsector, Dm has two
large and negative (attractive) eigenvalues, which correspond to a full nonet (singlet plus octet). The a2(1320)

13 We will omit here any reference to the K(1630) resonance, since its JP is undetermined yet [84].
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would be part of this nonet, and it might well be that the actual K∗
2 (1430) could be also a member of it. In

that scenario, the pole at (1708,−156) obtained here, and that we cannot move down closer to the mass of the
K∗

2 (1430) resonance, might correspond to a further state, for which we do not find an easy correspondence with
any of those reported in the PDG. On the other hand, by changing the subtraction constants it is possible to
generate some more 0+(2++) poles within our scheme, which might account for those states needed to fill in
completely the nonet mentioned above.

In this sector, and in contrast to the 0+ and 1+ cases, there appear in the PDG several even parity resonances
that cannot be accommodated within our scheme. Some of them, might be glueballs, but we cannot be here as
precise as we were in the previous sectors. The hidden gauge formalism for vector mesons used in Ref. [70] does
not improve on that, though its choice for the contact V V term might provide a more robust description of the
f2(1270) and K∗

2 (1430) resonances than that obtained here.

In summary, it has been shown that most of the low-lying even parity meson resonances, specially in the JP = 0+

and 1+ sectors, can be classified according to multiplets of the spin-flavor symmetry group SU(6). The f0(1500),
f1(1420) and some 0+(2++) resonances cannot be accommodated within SU(6) multiplets and thus they are clear
candidates to be glueballs or hybrids. On the other hand, we predict the existence of five exotic resonances (I ≥ 3/2
and/or |Y | = 2) with masses in region 1.4–1.6 GeV, which would complete the 271 and 103 and 10∗3 spin-flavor
multiplets.
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Appendix A: Coefficients of the s-wave tree level amplitudes

This Appendix gives the Dkin, Dm and Da matrices of the s-wave tree level meson-meson amplitudes in Eq. (40),
for the various Y IJ sectors (Tables XXI-LXI).

1. Kinetic term: Dkin

TABLE XXI: (Y, I, J) = (0, 0, 0).

ππ K̄K ηη ρρ ωω ωφ K̄∗K∗ φφ

−2
√
3

2
0 2

√
3 0 0 − 3

2
0

√
3

2
− 3

2
− 3

2
− 3

2

√
3

2

√
3 3

√
3

2

√
3

0 − 3

2
0 0 0 0 3

√
3

2
0

2
√
3 − 3

2
0 −4 2

√
3 0 3

√
3

2
0

0
√
3

2
0 2

√
3 −2 0 − 3

2
0

0
√
3 0 0 0 0 1 0

− 3

2

3
√

3

2

3
√

3

2

3
√

3

2
− 3

2
1 − 9

2
−3

0
√
3 0 0 0 0 −3 −4

TABLE XXII: (Y, I, J) = (0, 0, 1).

G ηφ ηω πρ (K̄K∗)A K̄∗K∗ ωφ (K̄K∗)S

− 0 0 0 −
√
6 −

√
6

− 0 0 0 −
√
3

√
3

− 0 0 −4
√
3 −

√
3

− −
√
6 −

√
3

√
3 −3 −1

− −
√
6

√
3 −

√
3 −1 −3

+ 0 −2

+ −2 0
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TABLE XXIII: (Y, I, J) = (0, 0, 2).

ρρ ωω ωφ K̄∗K∗ φφ

−1 −
√
3 0 0 0

−
√
3 1 0 0 0

0 0 0 −2 0

0 0 −2 0 0

0 0 0 0 2

TABLE XXIV: (Y, I, J) = (0, 1, 0).

ηπ K̄K ωρ φρ K̄∗K∗

0
√

3

2
0 0 − 3√

2

√

3

2
− 1

2
−
√

3

2
−
√
3

√
3

2

0 −
√

3

2
−4 0 3√

2

0 −
√
3 0 0 −1

− 3√
2

√
3

2

3√
2

−1 − 3

2

TABLE XXV: (Y, I, J) = (0, 1, 1).

G πφ πω ηρ (K̄K∗)S ρρ K̄∗K∗ πρ (K̄K∗)A ωρ φρ

+ 0 0 0
√
2 0

√
2

+ 0 0 0 1 2
√
2 −1

+ 0 0 0
√
3 0 −

√
3

+
√
2 1

√
3 −1 −

√
2 1

+ 0 2
√
2 0 −

√
2 −2

√
2

+
√
2 −1 −

√
3 1

√
2 −1

− 0 0 −2 0

− 0 0 0 −2

− −2 0 0 0

− 0 −2 0 0
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TABLE XXVI: (Y, I, J) = (0, 1, 2).

ωρ φρ K̄∗K∗

2 0 0

0 0 2

0 2 0

TABLE XXVII: (Y, I, J) = (0, 2, 0).

ππ ρρ

1 −
√
3

−
√
3 −1

TABLE XXVIII: (Y, I, J) = (0, 2, 1).

πρ

2

TABLE XXIX: (Y, I, J) = (0, 2, 2).

ρρ

2

TABLE XXX: (Y, I, J) = (1, 1/2, 0).

Kπ ηK K∗ρ K∗ω K∗φ

− 5

4

3

4

5
√

3

4
− 3

4
− 3

2
√

2

3

4

3

4
− 3

√
3

4
− 3

4
− 3

2
√

2

5
√

3

4
− 3

√
3

4
− 7

4
− 5

√
3

4

3
√

3
2

2

− 3

4
− 3

4
− 5

√
3

4
− 5

4

3

2
√

2

− 3

2
√

2
− 3

2
√

2

3
√

3
2

2

3

2
√

2
− 5

2
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TABLE XXXI: (Y, I, J) = (1, 1/2, 1).

πK∗ Kρ Kω ηK∗ Kφ K∗ρ K∗ω K∗φ

− 5

4

5

4
−

√
3

4
− 3

4
−
√

3
2

2
− 5

2
√

2

√
3
2

2
−

√
3

2

5

4
− 5

4

√
3

4

3

4

√
3
2

2

1

2
√

2

3
√

3
2

2

√
3

2

−
√
3

4

√
3

4

1

4

√
3

4

1

2
√

2

3
√

3
2

2

3

2
√

2

1

2

− 3

4

3

4

√
3

4

3

4

√
3
2

2
− 3

2
√

2
−
√

3
2

2

√
3

2

−
√

3
2

2

√
3
2

2

1

2
√

2

√
3
2

2

1

2
−

√
3

2
− 1

2
− 3√

2

− 5

2
√

2

1

2
√

2

3
√

3
2

2
− 3

2
√

2
−

√
3

2
− 3

2
−

√
3

2
−
√

3

2√
3
2

2

3
√

3
2

2

3

2
√

2
−
√

3
2

2
− 1

2
−

√
3

2
− 1

2
− 1√

2

−
√
3

2

√
3

2

1

2

√
3

2
− 3√

2
−
√

3

2
− 1√

2
−1

TABLE XXXII: (Y, I, J) = (1, 1/2, 2).

K∗ρ K∗ω K∗φ

−1
√
3 0

√
3 1 0

0 0 2

TABLE XXXIII: (Y, I, J) = (1, 3/2, 0).

Kπ K∗ρ

1 −
√
3

−
√
3 −1

TABLE XXXIV: (Y, I, J) = (1, 3/2, 1).

πK∗ Kρ K∗ρ

1 1 −
√
2

1 1
√
2

−
√
2

√
2 0

TABLE XXXV: (Y, I, J) = (1, 3/2, 2).

K∗ρ

2
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TABLE XXXVI: (Y, I, J) = (2, 0, 1).

KK∗ K∗K∗

0 −2

−2 0

TABLE XXXVII: (Y, I, J) = (2, 1, 0).

KK K∗K∗

1 −
√
3

−
√
3 −1

TABLE XXXVIII: (Y, I, J) = (2, 1, 1).

KK∗

2

TABLE XXXIX: (Y, I, J) = (2, 1, 2).

K∗K∗

2
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2. Contact term: Dm

TABLE XL: (Y, I, J) = (0, 0, 0).

ππ K̄K ηη ρρ ωω ωφ K̄∗K∗ φφ

0 0 0 16√
3

0 0 −4 0

0 0 0 −4 4√
3

8√
3

4
√
3 8√

3

0 0 0 0 0 0 4
√
3 0

16√
3

−4 0 − 208

3

80√
3

0 24
√
3 0

0 4√
3

0 80√
3

− 80

3
0 −24 0

0 8√
3

0 0 0 0 16

3
0

−4 4
√
3 4

√
3 24

√
3 −24 16

3
−72 −48

0 8√
3

0 0 0 0 −48 − 160

3

TABLE XLI: (Y, I, J) = (0, 0, 1).

G ηφ ηω πρ (K̄K∗)A K̄∗K∗ ωφ (K̄K∗)S

− 0 0 0 4
√

2

3
0

− 0 0 0 4√
3

0

− 0 0 16

3
− 4√

3
0

− 4
√

2

3

4√
3

− 4√
3

4 0

− 0 0 0 0 −28

+ 0 0

+ 0 −12
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TABLE XLII: (Y, I, J) = (0, 0, 2).

ρρ ωω ωφ K̄∗K∗ φφ

− 16

3

32√
3

0 4
√
3 0

32√
3

− 32

3
0 −4 0

0 0 0 40

3
0

4
√
3 −4 40

3
−12 −8

0 0 0 −8 − 64

3

TABLE XLIII: (Y, I, J) = (0, 1, 0).

ηπ K̄K ωρ φρ K̄∗K∗

0 0 0 0 −4
√
2

0 0 −4
√

2

3
− 8√

3

4√
3

0 −4
√

2

3
− 160

3
0 24

√
2

0 − 8√
3

0 0 − 16

3

−4
√
2 4√

3
24

√
2 − 16

3
−24

TABLE XLIV: (Y, I, J) = (0, 1, 1).

G πφ πω ηρ (K̄K∗)S ρρ K̄∗K∗ πρ (K̄K∗)A ωρ φρ

+ 0 0 0 − 4
√

2

3
0 0

+ 0 0 0 − 4

3
0 0

+ 0 0 0 − 4√
3

0 0

+ − 4
√

2

3
− 4

3
− 4√

3

4

3
0 0

+ 0 0 0 0 − 56

3

28
√

2

3

+ 0 0 0 0 28
√

2

3
− 28

3

− −8 4
√
2 0 0

− 4
√
2 −4 0 0

− 0 0 0 0

− 0 0 0 0



37

TABLE XLV: (Y, I, J) = (0, 1, 2).

ωρ φρ K̄∗K∗

− 64

3
0 4

√
2

0 0 − 40

3

4
√
2 − 40

3
−4

TABLE XLVI: (Y, I, J) = (0, 2, 0).

ππ ρρ

0 − 8√
3

− 8√
3

− 16

3

TABLE XLVII: (Y, I, J) = (0, 2, 1).

πρ

− 8

3

TABLE XLVIII: (Y, I, J) = (0, 2, 2).

ρρ

− 40

3

TABLE XLIX: (Y, I, J) = (1, 1/2, 0).

Kπ ηK K∗ρ K∗ω K∗φ

0 0 10√
3

−2 −2
√
2

0 0 −2
√
3 −2 −2

√
2

10√
3

−2
√
3 − 100

3
− 44√

3
12

√
6

−2 −2 − 44√
3

− 44

3
12

√
2

−2
√
2 −2

√
2 12

√
6 12

√
2 − 88

3
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TABLE L: (Y, I, J) = (1, 1/2, 1).

πK∗ Kρ Kω ηK∗ Kφ K∗ρ K∗ω K∗φ

− 4

3
− 14

3
− 2√

3
4 −2

√

2

3
0 0 0

− 14

3
− 4

3
− 4√

3
2 −4

√

2

3
0 0 0

− 2√
3

− 4√
3

− 4

3

2√
3

− 4
√
2

3
0 0 0

4 2 2√
3

−4 2
√

2

3
0 0 0

−2
√

2

3
−4

√

2

3
− 4

√
2

3
2
√

2

3
− 8

3
0 0 0

0 0 0 0 0 −14 − 14√
3

−14
√

2

3

0 0 0 0 0 − 14√
3

− 14

3
− 14

√
2

3

0 0 0 0 0 −14
√

2

3
− 14

√
2

3
− 28

3

TABLE LI: (Y, I, J) = (1, 1/2, 2).

K∗ρ K∗ω K∗φ

2

3
− 26√

3
2
√
6

− 26√
3

− 26

3
2
√
2

2
√
6 2

√
2 − 52

3

TABLE LII: (Y, I, J) = (1, 3/2, 0).

Kπ K∗ρ

0 − 8√
3

− 8√
3

− 16

3

TABLE LIII: (Y, I, J) = (1, 3/2, 1).

πK∗ Kρ K∗ρ

− 4

3
− 4

3
0

− 4

3
− 4

3
0

0 0 0

TABLE LIV: (Y, I, J) = (1, 3/2, 2).

K∗ρ

− 40

3
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TABLE LV: (Y, I, J) = (2, 0, 1).

KK∗ K∗K∗

0 0

0 0

TABLE LVI: (Y, I, J) = (2, 1, 0).

KK K∗K∗

0 − 8√
3

− 8√
3

− 16

3

TABLE LVII: (Y, I, J) = (2, 1, 1).

KK∗

− 8

3

TABLE LVIII: (Y, I, J) = (2, 1, 2).

K∗K∗

− 40

3
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3. (u− t) term: Da

The matrix elements corresponding to Da are displayed. The (Y, I, J) or (Y, I, J,G) sectors with identically zero
matrices are omitted. PP and V V channels (for which the matrix vanishes) are also omitted.

TABLE LIX: (Y, I, J,G) = (0, 0, 1,+).

(K̄K∗)S

3

TABLE LX: (Y, I, J,G) = (0, 1, 1,−).

πρ (K̄K∗)A

2 −
√
2

−
√
2 1

TABLE LXI: (Y, I, J) = (1, 1/2, 1).

πK∗ Kρ Kω ηK∗ Kφ

3

4

3

4

√
3

4
− 3

4

√
3
2

2

3

4

3

4

√
3

4
− 3

4

√
3
2

2

√
3

4

√
3

4

1

4
−

√
3

4

1

2
√

2

− 3

4
− 3

4
−

√
3

4

3

4
−
√

3
2

2√
3
2

2

√
3
2

2

1

2
√

2
−
√

3
2

2

1

2
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Appendix B: Computation of the eigenvalues

To get the eigenvalues associated to each of the SU(6) projectors in Eqs. (34) and (35), we just let act HSU(6)
± on

one of the states of the vector space associated to each representation. For instance, the vector space associated to
the singlet representation is generated by the state

|1〉 = M †a
b M †b

a |0〉, a, b = 1, · · · 2NF . (B1)

This gives

Ĝ+|1〉 = : Tr
(
(MM †)2 −M2M †2) : M †a

b M †b
a |0〉

= 2

(

M †i
j M j

kM
†k
l M l

iM
†a
b M †b

a −M †i
j M †j

k Mk
l M

l
iM

†a
b M †b

a

)

|0〉 = −4NF |1〉 (B2)

and similarly for ĜM. For the remaining symmetric representations, a convenient choice of states is

|2〉 = M †1
b M †b

2 |0〉, |3〉 =
(

M †1
2 M †3

4 −M †3
2 M †1

4

)

|0〉, |4〉 = M †1
2 M †1

2 |0〉 (B3)

for the 35s, 189 and 405 representations, respectively.
The p−wave part Gd − Gc can be represented as the matrix element of an operator in a fermion space

Gd − Gc = −〈0|M i′

j′M
k′

l′ Tr(M
†2M2)M †i

j M †k
l |0〉 (B4)

where now the M i
j operators satisfy an anticommutation relation

{M i
j ,M

†k
l } = δkj δ

i
l −

1

2NF
δijδ

k
l (B5)

and Eq. (27) still holds. One can follow the same techniques as those outlined above for the Ĝ+ operators, using e.g.
the states

|5〉 = M †1
b M †b

2 |0〉, |6〉 = M †1
3 M †2

3 |0〉, |7〉 = M †3
1 M †3

2 |0〉 (B6)

for the 35a, 280 and 280
∗ antisymmetric representations.
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