234 research outputs found

    Emergence of atom-light-mirror entanglement inside an optical cavity

    Full text link
    We propose a scheme for the realization of a hybrid, strongly quantum-correlated system formed of an atomic ensemble surrounded by a high-finesse optical cavity with a vibrating mirror. We show that the steady state of the system shows tripartite and bipartite continuous variable entanglement in experimentally accessible parameter regimes, which is robust against temperature

    Self-cooling of a movable mirror to the ground state using radiation pressure

    Full text link
    We show that one can cool a micro-mechanical oscillator to its quantum ground state using radiation pressure in an appropriately detuned cavity (self-cooling). From a simple theory based on Heisenberg-Langevin equations we find that optimal self-cooling occurs in the good cavity regime, when the cavity bandwidth is smaller than the mechanical frequency, but still larger than the effective mechanical damping. In this case the intracavity field and the vibrational mechanical mode coherently exchange their fluctuations. We also present dynamical calculations which show how to access the mirror final temperature from the fluctuations of the field reflected by the cavity.Comment: 4 pages, 3 figure

    Recovery of missing data in correlated smart grid datasets

    Get PDF
    We study the recovery of missing data from multiple smart grid datasets within a matrix completion framework. The datasets contain the electrical magnitudes required for monitoring and control of the electricity distribution system. Each dataset is described by a low rank matrix. Different datasets are correlated as a result of containing measurements of different physical magnitudes generated by the same distribution system. To assess the validity of matrix completion techniques in the recovery of missing data, we characterize the fundamental limits when two correlated datasets are jointly recovered. We then proceed to evaluate the performance of Singular Value Thresholding (SVT) and Bayesian SVT (BSVT) in this setting. We show that BSVT outperforms SVT by simulating the recovery for different correlated datasets. The performance of BSVT displays the tradeoff behaviour described by the fundamental limit, which suggests that BSVT exploits the correlation between the datasets in an efficient manner

    Quantum entanglement and teleportation in pulsed cavity-optomechanics

    Full text link
    Entangling a mechanical oscillator with an optical mode is an enticing and yet a very challenging goal in cavity optomechanics. Here we consider a pulsed scheme to create Einstein-Podolsky-Rosen-type entanglement between a traveling-wave light pulse and a mechanical oscillator. The entanglement can be verified unambiguously by a pump-probe sequence of pulses. In contrast to schemes that work in a steady-state regime under a continuous-wave drive, this protocol is not subject to stability requirements that normally limit the strength of achievable entanglement. We investigate the protocol's performance under realistic conditions, including mechanical decoherence, in full detail. We discuss the relevance of a high mechanical Qf product for entanglement creation and provide a quantitative statement on which magnitude of the Qf product is necessary for a successful realization of the scheme. We determine the optimal parameter regime for its operation and show it to work in current state-of-the-art systems.Comment: 10 pages, 2 figure

    Robust recovery of missing data in electricity distribution systems

    Get PDF
    The advanced operation of future electricity distribution systems is likely to require significant observability of the different parameters of interest (e.g., demand, voltages, currents, etc.). Ensuring completeness of data is, therefore, paramount. In this context, an algorithm for recovering missing state variable observations in electricity distribution systems is presented. The proposed method exploits the low rank structure of the state variables via a matrix completion approach while incorporating prior knowledge in the form of second order statistics. Specifically, the recovery method combines nuclear norm minimization with Bayesian estimation. The performance of the new algorithm is compared to the information-theoretic limits and tested trough simulations using real data of an urban low voltage distribution system. The impact of the prior knowledge is analyzed when a mismatched covariance is used and for a Markovian sampling that introduces structure in the observation pattern. Numerical results demonstrate that the proposed algorithm is robust and outperforms existing state of the art algorithms

    Recovering Missing Data via Matrix Completion in Electricity Distribution Systems

    Get PDF
    The performance of matrix completion based recovery of missing data in electricity distribution systems is analyzed. Under the assumption that the state variables follow a multivariate Gaussian distribution the matrix completion recovery is compared to estimation and information theoretic limits. The assumption about the distribution of the state variables is validated by the data shared by Electricity North West Limited. That being the case, the achievable distortion using minimum mean square error (MMSE) estimation is assessed for both random sampling and optimal linear encoding acquisition schemes. Within this setting, the impact of imperfect second order source statistics is numerically evaluated. The fundamental limit of the recovery process is characterized using Rate-Distortion theory to obtain the optimal performance theoretically attainable. Interestingly, numerical results show that matrix completion based recovery outperforms MMSE estimator when the number of available observations is low and access to perfect source statistics is not availabl

    Micro-mechanical oscillator ground state cooling via intracavity optical atomic excitations

    Full text link
    We predict ground state cooling of a micro-mechanical oscillator, i.e. a vibrating end-mirror of an optical cavity, by resonant coupling of mirror vibrations to a narrow internal optical transition of an ensemble of two level systems. The particles represented by a collective mesoscopic spin model implement, together with the cavity, an efficient, frequency tailorable zero temperature loss channel which can be turned to a gain channel of pump. As opposed to the case of resolved-sideband cavity cooling requiring a small cavity linewidth, one can work here with low finesses and very small cavity volumes to enhance the light mirror and light atom coupling. The tailored loss and gain channels provide for efficient removal of vibrational quanta and suppress reheating. In a simple physical picture of sideband cooling, the atoms shape the cavity profile to enhance/inhibit scattering into higher/lower energy sidebands. The method should be applicable to other cavity based cooling schemes for atomic and molecular gases as for molecular ensembles coupled to stripline cavities

    The impact of the first COVID-19 lockdown on weight management practices in UK adults: a self-regulation perspective

    Get PDF
    This study aimed to identify the impact of the first UK COVID-19 lockdown on individuals’ weight management attempts (WMA). A self-regulation theoretical framework was used to identify predictors of continuing with a WMA, and weight change during the lockdown. An online retrospective cross-sectional study was conducted after the first UK COVID-19 lockdown. The sample consisted of 166 UK adults (M:31.08, SD:12.15) that were trying to manage their weight before the lockdown started. The survey assessed changes in WMA and practices, and measured perceived stress, flexible/rigid restraint, uncontrolled eating, craving control, and self-compassion. Results showed that 56% of participants reported disruption to their WMA during the lockdown. Participants with lower levels of perceived stress and higher flexible restraint were more likely to continue their WMA. Flexible restraint was a significant predictor of weight change. Interventions that promote flexibility in weight management may be beneficial for at-risk individuals under lockdown conditions

    Robust entanglement of a micromechanical resonator with output optical fields

    Full text link
    We perform an analysis of the optomechanical entanglement between the experimentally detectable output field of an optical cavity and a vibrating cavity end-mirror. We show that by a proper choice of the readout (mainly by a proper choice of detection bandwidth) one can not only detect the already predicted intracavity entanglement but also optimize and increase it. This entanglement is explained as being generated by a scattering process owing to which strong quantum correlations between the mirror and the optical Stokes sideband are created. All-optical entanglement between scattered sidebands is also predicted and it is shown that the mechanical resonator and the two sideband modes form a fully tripartite-entangled system capable of providing practicable and robust solutions for continuous variable quantum communication protocols

    Radiation-pressure self-cooling of a micromirror in a cryogenic environment

    Full text link
    We demonstrate radiation-pressure cavity-cooling of a mechanical mode of a micromirror starting from cryogenic temperatures. To achieve that, a high-finesse Fabry-Perot cavity (F\approx 2200) was actively stabilized inside a continuous-flow 4He cryostat. We observed optical cooling of the fundamental mode of a 50mu x 50 mu x 5.4 mu singly-clamped micromirror at \omega_m=3.5 MHz from 35 K to approx. 290 mK. This corresponds to a thermal occupation factor of \approx 1x10^4. The cooling performance is only limited by the mechanical quality and by the optical finesse of the system. Heating effects, e.g. due to absorption of photons in the micromirror, could not be observed. These results represent a next step towards cavity-cooling a mechanical oscillator into its quantum ground state
    • …
    corecore