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Recovering Missing Data via Matrix Completion in

Electricity Distribution Systems
Cristian Genes, Iñaki Esnaola, Samir M. Perlaza, Luis F. Ochoa, and Daniel Coca.

Abstract—The performance of matrix completion based recov-
ery of missing data in electricity distribution systems is analyzed.
Under the assumption that the state variables follow a multi-
variate Gaussian distribution the matrix completion recovery is
compared to estimation and information theoretic limits. The as-
sumption about the distribution of the state variables is validated
by the data shared by Electricity North West Limited. That being
the case, the achievable distortion using minimum mean square
error (MMSE) estimation is assessed for both random sampling
and optimal linear encoding acquisition schemes. Within this
setting, the impact of imperfect second order source statistics
is numerically evaluated. The fundamental limit of the recovery
process is characterized using Rate-Distortion theory to obtain
the optimal performance theoretically attainable. Interestingly,
numerical results show that matrix completion based recovery
outperforms MMSE estimator when the number of available
observations is low and access to perfect source statistics is not
available.

I. INTRODUCTION

The electricity network is changing towards a locally con-

trolled smart grid which incorporates an advanced sensing and

management infrastructure. Energy sources such as solar or

wind power are envisioned as integral elements of the network

at the end-user level. As a result, the number of nonlinear loads

is expected to increase, which results in larger perturbations

in the electricity grid [1]. The complexity of the control

strategies in the smart grid is expected to increase guided by

the challenges posed by new and distributed energy sources.

The implementation of advanced control strategies demands

access to accurate and low latency data describing the state

of the grid, which increases the performance requirements for

the sensing infrastructure. The state estimation problem when

data injection attacks are present is studied in [2], [3], [4], and

[5]. Sensor failures, errors during data collection, unreliable

transmission, and storage issues are just some of the causes

of the operator having an incomplete set of observations of

the state variables describing the grid. Given the size and

complexity of the sensing infrastructure, tracking all these

events is not feasible. It is therefore necessary to estimate the

missing state variables using the available observations.
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Fig. 1. Block diagram describing the system model.

Missing data recovery can be cast as a minimum mean

square error (MMSE) estimation problem. However, this

approach relies in access to prior information, specifically,

second order statistics of the state variables. Therefore, in

practical scenarios where perfect prior knowledge is not

available to the operator, MMSE estimation based recovery

is suboptimal [6]. In the smart grid context, the increased

number of nonlinear loads affects the precision of the statistics

postulated for the state variables model, and ultimately, the

precision of MMSE based recovery.

Matrix completion offers an alternative approach to the

problem of recovering missing observations by exploiting the

statistical structure of the observations [7], [8]. In particular,

the fact that correlated data vectors give rise to low rank data

matrices is exploited in a convex optimization context. That

being the case, it can be shown that the recovery of missing

observations is feasible provided that a sufficient fraction of

the observations is available [9], [10], [11], [12] and [13].

However, the results therein are based on the assumption that

missing entries are not correlated, which is not always the

case in practical scenarios. Within that setting, low rank min-

imization tools are proving useful in electricity grid settings

[14], [15]. The case of correlated missing entries for phasor

measurement units data is studied in [16].

In this paper, the performance of different missing data re-

covery methods is studied. The viability of matrix completion

as a recovery strategy when there are missing observations is

compared to MMSE estimation based recovery. A mismatched

covariance matrix scenario is proposed to study the trade-off

between the amount of prior knowledge and the performance

of different recovery techniques. In this framework, a com-

parison between matrix completion and MMSE estimation for

different levels of mismatch is presented.

The main contributions in this work are summarized next.

It is shown that the data set is approximately Gaussian

distributed. In view of this, a Gaussian random process is

proposed to model the state variables. The conditions for

which matrix completion outperforms MMSE estimation are

characterized. Interestingly, numerical results show that matrix
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Fig. 2. QQ plot for the distribution of the voltage data provided by ENWL
versus a Gaussian distribution.

completion performs better for moderate and high levels of

mismatched statistics when more than half of the measure-

ments are missing. MMSE estimation is also outperformed

by matrix completion for moderate mismatch regimes when

at least a quarter of the data is not available. Similarly, for

high mismatch regimes matrix completion based recovery

outperforms MMSE estimation for a wide range of missing

data values.

II. SYSTEM MODEL

Consider a electricity distribution secondary substation with

n low voltage (LV) feeders. At the head of the feeder con-

nected to the transformer a sensing unit measures various

electrical magnitudes, e.g., voltage, intensity, active and re-

active power in the feeder at a given time instant. These

measures comprise the state variables that the operator uses for

control, monitoring, and management purposes. The process

of acquiring the state variables by the operator is referred to

as the data acquisition process. Unfortunately, the presence of

noise and missing data variables provides the operator with a

set of incomplete and corrupted state variables. That being the

case, the operator needs to estimate the missing entries based

on the available observations with a given optimality criterion.

More specifically, the data acquisition process is modelled

by the scheme depicted in Figure 1. In this setting, the real-

izations of the state variables produced during p time instants

in the n feeders of the LV distribution system are arranged in

the matrix M 2 R
p×n. The information source, Sx, expresses

the statistical structure of the underlying stochastic processes

governing the state variables. A subset of the state variables,
eY 2 R

m×n, m < p, is observed and corrupted by addi-

tive white Gaussian noise which results in the observations,

Y 2 R
m×n, that are available to the operator for estimation

purposes. The additive noise represents the thermal noise

introduced by the sensors used in the LV feeders. The subset of

state variables that are not observed accounts for the missing

entries in the data acquisition process. The main challenge for

Fig. 3. Sample covariance matrix of the voltage data provided by ENWL.

the recovery procedure is to estimate the missing entries. A

detailed description of the elements in the system follows.

A. Source Model for State Variables

Let xj,i,l 2 R be the value of the state variable j in feeder i

at time l. The column vector xj,i = [xj,i,1, xj,i,2, . . . , xj,i,p]
T

contains the values of state variable j in feeder i at discrete

time instants l = 1, 2, . . . , p. The aggregated data describing

state variable j in all feeders is given by the data matrix Mj =
[xj,1 xj,2 . . .xj,n] 2 R

p×n. In the remaining of the paper,

the analysis is presented for a particular state variable, and

therefore, the index j is dropped. That being the case, the

data matrix M describes the state variable of interest in all

feeders for time instants l = 1, 2, . . . , p.

The vector of state variables, xi, is a realization

of the discrete random process Sx. As part of the

“Low Voltage Network Solutions” project run by Electricity

North West Limited, measurements are collected every minute

from 200 residential secondary substations across the North

West of England from June 2013 to January 2014. Daily data

files contain the following measurements: voltage, current, real

and reactive power on all three phases. The analysis in this

paper is particularized to the case in which the state variable

under consideration is voltage, but can be easily extended

to other state variables. Figure 2 shows the Q-Q plot of the

voltage data comparing the LV data to a Gaussian distribution.

It can be seen that the distribution is close to a Gaussian

distribution up to a minor deviation around the tails. In view

of this, the real data set used in this work suggests that Sx can

be modelled as a multivariate Gaussian random process, i.e.

xi ⇠ N (µ,Σ), and {xi}ni=1 is an independent and identically

distributed sequence. The sample covariance matrix obtained

with the real data set is depicted in Figure 3. Interestingly, the

covariance matrix exhibits a structure that is approximately

Toeplitz, a feature that is usually observed in stationary au-

toregressive signals. The Toeplitz model resembles a physical

temporal correlation where the correlation decreases as the

temporal distance increases. This implies that the correlation



between two voltage observations in the same feeder depends

on their separation in time.

B. Acquisition

The acquisition process is modelled by the function f :
R

n ! R
m, where m is the number of observed entries for

each vector of state variables xi. The observations from feeder

i that are available to the operator are given by yi 2 R
m.

Note that noise is modelled as additive Gaussian noise zi ⇠
N (0, σ2

zIm) and the observations of feeder i available to the

operator are given by yi = ỹi + zi, where ỹi = f(xi) are

the noiseless observations of feeder i. The resulting set of

noiseless observations are given by matrix eY 2 R
m×n which

is formed as eY = [ỹ1, ỹ2, . . . , ỹn]. Thus, the noisy set of

observations available to the operator are given by Y = eY+Z,

where Z = [z1, z2, . . . , zn].

C. Estimation

The estimation process is modelled by the function g :
R

m ! R
n which produces the estimate x̂ = g(f(x)+z). The

optimality criterion for the reconstruction error is the mean

square error (MSE) given by

MSE (x; g(f(x)))
∆
= E

⇥
kx− g(f(x) + z)k22

⇤
. (1)

The optimal reconstruction strategy in the MSE sense, g∗,

is the MMSE estimator given by the following conditional

expectation:

x̂MMSE = g∗(y)
∆
= E[x|y,Σ]. (2)

For a given acquisition function, f , the MSE achievable via

MMSE estimation is given by

MMSE(x|f(x) + z) = E
⇥
kx− E[x|f(x) + z]k22

⇤
. (3)

For a particular feeder i the operator produces the estimate

x̂i. Thus, it is easy to extend the previous estimation vector

formulation to a matrix formulation where the estimate of

the data matrix is given by cM = h(Y) with the estimation

function given by h : Rm×n ! R
p×n. Consequently, the MSE

optimality criterion for the estimation of the data matrix is

MSE (M;h(Y)) = E
⇥
kM− h(Y)k2F

⇤
, (4)

where k·kF denotes the Frobenius norm. Similarly, the MMSE

estimate is obtained as

cMMMSE = h∗(Y) = E[M|Y,Σ], (5)

where h∗ : Rm×n ! R
p×n is the MMSE estimation function

which yields a performance given by

MMSE(X|Y) = E
⇥
kX− E[M|Y,Σ]k2F

⇤
. (6)

In practical settings the real covariance matrix Σ is not

known during the recovery process due to the fact that source

statistics need to be estimated by the operator. For that reason,

practical systems operate with a postulated covariance matrix

Σ∗ which differs, in general, from the real covariance matrix.

Note that for the case in which the estimator has access to

perfect prior knowledge, it holds that Σ = Σ∗.

III. MATRIX COMPLETION

Given a data matrix M 2 R
p×n, with p  n, let Mi,j with

(i, j) 2 Ω be the set of observations where Ω is the set of

indices of the available entries. In general, the missing entries

cannot be estimated without assuming additional structure

about the data matrix M. Remarkably, in [9] it is shown that

most low-rank matrices can be recovered when the number of

sampled entries obeys

m ≥ Cn1.25r log n, (7)

where r is the rank of M and C is a positive constant with

a probability of recovery of at least 1 − cn−3 log n with c a

positive constant. Let PΩ be the orthogonal projector onto the

span of matrices vanishing outside Ω so that the the entry (i, j)
of PΩ(X) is equal to Xij if (i, j) 2 Ω and zero otherwise.

The missing entries are recovered by solving the optimisation

problem

minimize
X

rank(X)

subject to PΩ(X) = PΩ(M),
(8)

where X is the decision variable. Unfortunately, solving

this problem is computationally unfeasible. The optimisation

problem is NP-hard and all known algorithms achieving the

exact solution require time doubly exponential in the dimen-

sion of the matrix [17]. However, it can be shown that in

some cases the optimization problem in (8) can be solved

exactly via convex programming. Specifically, the following

convex relaxation is proposed in [9] based on nuclear norm

minimization:

minimize
X

kXk∗
subject to PΩ(X) = PΩ(M),

(9)

where kXk∗ refers to the nuclear norm of the matrix X,

kXk∗ =

pX

k=1

σk(X), (10)

and σk(X) denotes the k-th largest singular value of X.

There are several approaches to solve the nuclear norm

minimization problem. A short classification based on the

trade-offs between computational performance, theoretical

guarantees, and numerical accuracy is provided in [7]. For

small matrices, interior point methods can be used to provide

accurate solutions. Methods like SeDuMi [18] or SDPT3

[19] use second-order information and are able to produce

accurate solutions for matrix dimensions around 50. How-

ever, to reduce memory requirements the problem structure

must be exploited. In [8] matrix sizes up to 350 can be

recovered using interior point methods. Alternatively, singular

value thresholding (SVT) is a simple, first-order algorithm

proposed in [20]. For iteration k the algorithm produces the

pair of matrices (Xk,Yk) by performing a soft-thresholding

operation on the singular values of matrix Yk. The main

advantage of this approach is that the algorithm makes use

of minimal storage space by exploiting the sparsity of Yk

and has a low computational cost per iteration. It is shown in



[20] that the sequence Xk converges to the unique solution of

the following optimisation problem

minimize
X

τkXk∗ +
1

2
kXk2F

subject to PΩ(X) = PΩ(M),
(11)

which converges to the problem described in (9) for τ ! 1.

The iterations steps of the algorithm are described below:
(
Xk = Dτ (Y

k−1),

Yk = Yk−1 + δkPΩ(M−Xk),
(12)

where the initialization point is chosen as Y0 = 0, δk is

a sequence of positive step sizes, and the soft-thresholding

operator, Dτ , is defined as follows. For a matrix X 2 R
p×n

of rank r with singular value decomposition given by

X = UΣVT , Σ = diag({σi}1≤i≤r), (13)

where U and V are matrices with orthogonal columns of size

p ⇥ r and n ⇥ r, respectively, and σi are the singular values

of the matrix X, the soft-thresholding operator is defined as

Dτ (X) := UDτ (Σ)VT , Dτ (Σ) = diag({(σi − τ)+}),
(14)

where t+ = max(0, t). That is, the operator applies a soft-

thresholding rule to the singular values of X, shrinking these

towards zero. Large values of τ guarantee that the result is

a low-rank matrix. However, for values that are larger than

max (σi) the soft-thresholding operator vanishes all the singu-

lar values. Clearly, the choice of τ is important to guarantee

a successful recovery. In [20], it is proposed to set the value

of the threshold τ = 5n to let the term τkMk∗ dominate the

term 1

2
kMk2F . Using standard random matrix theory, it can be

shown that the Frobenius norm of M concentrates around n
p
r

and the nuclear norm concentrates around nr [20]. Therefore,

setting τ = 5n guarantees that on the average, the value of

τkMk∗ is 10 times that of 1

2
kMk2F as long as the rank is

bounded away from the dimension n.

IV. PERFORMANCE LIMITS

The performance of matrix completion based recovery us-

ing SVT is compared to three different performance limits.

First, the distortion of the MMSE estimator with access to

perfect second order statistics is studied. The performance

of an optimal linear encoder (OLE) that operates with the

same number of measurements is also assessed. Last, the

information theoretic limit given by the optimal performance

theoretically attainable (OPTA) is characterized.

A. Minimum Mean Squared Error

The MMSE estimation performance is given by

MMSE(M|PΩ(M)) = E
⇥
kM− E[M|PΩ(M) + Z,Σ]k2F

⇤
,

(15)

where PΩ is the sampling operator defined in Section III

and Σ is the covariance matrix available to the operator. The

performance of the MMSE estimator depends on the quality

of Σ. For a multivariate Gaussian source the MMSE distortion

is given by:

DMMSE =
1

n
Tr(ΣΩcΩc −ΣΩcΩΣ

−1
ΩΩ

ΣΩΩc), (16)

where Ω is the set of observed entries, Ωc is the set of

missing entries, ΣΩcΩ is the cross-covariance matrix between

the entries in Ωc and the entries in Ω and ΣΩcΩc is the auto-

covariance matrix of the entries in Ωc . Similarly, ΣΩΩc is

the cross-covariance matrix between the entries in Ω and the

entries in Ωc and ΣΩΩ is the auto-covariance matrix of the

entries in Ω.

B. Optimal Linear Encoder

In the case in which f is a linear transformation P and
eY = PM, the MMSE estimation performance is

MMSE(M|PM+Z) = E
⇥
kM−E[M|PM+Z,Σ]k2F

⇤
. (17)

For Gaussian sources, the average distortion per sample is

given by for any given linear projection matrix P

DOLE =
1

n
Tr
(
Σ−ΣPT (PΣPT + σ2

zIm)−1PΣ
)
, (18)

where P 2 R
m×p. The design of the optimal matrix P (in the

MMSE sense) is described in [21].

C. Optimal Performance Theoretically Attainable

The optimal performance theoretically attainable is gov-

erned by the Rate-Distortion function of the distribution

describing the state variables. The Rate-Distortion function

determines the achievable distortion for a given number of

observations. The trade-off between the number of available

observations and the achievable distortion is determined by the

rate-distortion function.

The Rate-Distortion function of a multivariate Gaussian

source is given by the following parametric equations [22]
(
R(θ) = 1

n

Pn−1

i=0
max(0, 1

2
log λi

θ
)

D(θ) = 1

n

Pn−1

i=0
min(θ, λi),

(19)

where R is the source rate in nats/symbol, D is the mean

squared error distortion per entry, λi is the i th largest eigen-

value of Σ, and θ is a parameter.

Since the acquisition process introduces additive white

Gaussian noise (AWGN) in the observations, the optimal

performance theoretically attainable is given by

R(D) < C, (20)

where C is the capacity of the AWGN channel. Thus, the

OPTA is given by

R(D)  m

2pn
log10(1 + γ), (21)

where the signal to noise ratio, γ, is defined as:

γ =
1

n
Tr(Σ)

σ2
z

. (22)
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V. NUMERICAL RESULTS

Different recovery techniques are numerically assessed us-

ing real data. To assess the recovery error only the complete

files containing voltage state variables are used. The test

matrix, M, is 841 ⇥ 841 (841 measurements describing the

state of the grid over a period of 3.5 hours from each of the 841
files). Each column contains voltage measurements describing

the state of the grid in different days and for different feeders.

The recovery of missing data based on SVT is evaluated

for different values of τ . The value τ = 5n is proposed in

[20] following the reasoning described in Section III, while

other values of τ are obtained by numerical optimization. The

performance of the SVT based recovery is defined in terms of

the distortion of the error given by

DSVT =
1

n2
kM− cMk2F . (23)

Numerical results in this section are obtained for a logarithmic

signal to noise ratio value of 10 log10γ = 20 dB.

A. Perfect prior knowledge

The case in which perfect knowledge of the second order

statistics is available to the operator is studied. Figure 4 depicts

the achievable distortion when SVT, MMSE estimation with

perfect prior knowledge, OLE, and the OPTA are considered.

Interestingly, SVT distortion is close to the optimal distortion

achievable by MMSE estimation when the fraction of missing

entries is greater than 0.9. Note that the SVT based recovery

performs the closest to the fundamental limit right before the

phase transition of the SVT approach takes place. This implies

that operating in a regime in which the matrix completion

approach is efficient imposes low robustness guarantees, i.e.,

the operating point is close to the phase transition.
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B. Mismatched covariance matrix

In practical scenarios, postulated statistics available to the

operator do not match the real statistics. To study this case,

D
∗ is numerically assessed in the presence of different levels

of mismatch.

In this case, the distortion of the estimator is given by

D
∗ = D0 +DA, where D0 is the distortion when perfect prior

knowledge is available and DA is the excess distortion incurred

by the system in the mismatched case.

A Gaussian Wishart perturbation model is introduced to

assess the performance of mismatched estimators [23], [24].

The postulated covariance matrix is given by:

Σ∗ = Σ+ αA, (24)

where Σ∗ is the postulated mismatched covariance matrix,

A = HHT with H 2 R
n×n, and the entries of H are

distributed as N (0, n−1) so that 1

n
E[Tr(A)] = 1. The strength

of the mismatch is determined by α.

Figure 5 shows the performance of the MMSE estimator

for different levels of mismatch and the SVT based recovery

for different threshold values as a function of the number of

missing observations. It can be seen that SVT based recovery

outperforms MMSE estimation in the moderate mismatch

regime, i.e., α ≥ 0.5, for a wide range of the fraction

of missing observations. Remarkably, the setting in which

the SVT recovery outperforms MMSE estimation extends to

the moderate missing data regime. Consequently, the SVT

approach is the best performing strategy even when it op-

erates away from the phase-transition point, which provides

additional robustness guarantees, i.e., the number of missing

observations can change without inducing catastrophic errors

in the recovery process.



VI. CONCLUSION

This paper presents matrix completion using SVT as an

alternative to MMSE estimation when the statistics of the data

are not known perfectly. Using real data of a electricity dis-

tribution grid, the distortion introduced by MMSE estimation

and SVT recovery is numerically assessed. The availability

of second order statistics in a practical setting is modelled

by considering access to a mismatched covariance matrix. It

is numerically shown, that under source uncertainty, matrix

completion recovery outperforms classical Bayesian estima-

tion. However, an analysis of the information theoretic limits

shows that better alternatives need to be devised when the

number of missing observations is low. Still, the SVT recovery

operates with minimum prior knowledge, i.e., the data matrix

admits a low rank approximation. In contrast to that, MMSE

estimation requires access to accurate second order statistics

which is an unrealistic assumption in a real system. Therefore,

matrix completion based recovery is a viable alternative for

recovering missing samples in distribution grids.
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