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ABSTRACT

We study the recovery of missing data from multiple smart grid

datasets within a matrix completion framework. The datasets con-

tain the electrical magnitudes required for monitoring and control of

the electricity distribution system. Each dataset is described by a low

rank matrix. Different datasets are correlated as a result of contain-

ing measurements of different physical magnitudes generated by the

same distribution system. To assess the validity of matrix comple-

tion techniques in the recovery of missing data, we characterize the

fundamental limits when two correlated datasets are jointly recov-

ered. We then proceed to evaluate the performance of Singular Value

Thresholding (SVT) and Bayesian SVT (BSVT) in this setting. We

show that BSVT outperforms SVT by simulating the recovery for

different correlated datasets. The performance of BSVT displays the

tradeoff behaviour described by the fundamental limit, which sug-

gests that BSVT exploits the correlation between the datasets in an

efficient manner.

Index Terms— smart grid, matrix completion, missing data re-

covery, correlated data

1. INTRODUCTION

The integration of residential low carbon energy sources such as so-

lar or wind power generates bidirectional power flows that affect

the stability of the smart grid [1]. The control strategies need to

adapt to the new challenges posed by the additional distributed en-

ergy sources. In this context, the monitoring procedures are expected

to manage the dynamic and unknown scenarios and to provide timely

and accurate data describing the state of the grid. For example, the

lack of data quality in power systems contributed towards several

large-scale blackouts such as the 2003 U.S.-Canadian blackout [2]

and the 2003 Italy blackout [3]. In addition, the integration of the

Internet of things into the smart grid will significantly increase the

number of datasets [4]. In practical scenarios, state estimation and

monitoring systems face challenges like data injection attacks [5],

[6], [7], [8], [9] or missing data [10], [11], [12]. Telemetry errors

such as sensor failures or communication issues lead to incomplete

sets of observations that do not fully describe the state of the grid.

Therefore, it is vital to estimate the missing data based on the avail-

able observations. For instance, accurate measurements are neces-

sary to implement centralized control schemes for voltage regulation

in distribution systems [13].

Matrix completion (MC) is proposed in [14] as technique to re-

cover missing data from partial observations. MC-based recovery

exploits the fact that correlated state variable vectors give rise to ap-

proximately low rank data matrices. Specifically, in a convex opti-

mization context, a low rank matrix is estimated given that a suffi-

cient fraction of the entries is observed. See for instance [15] and

[16]. However, when the number of observations is insufficient, the

recovery of the data matrix is not possible. A potential way for-

ward in this case is to attempt a joint recovery of multiple datasets

by exploiting the fact that when datasets are correlated the rank of
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the resulting joint dataset grows in a sub-additive fashion. When

the number of observations in one dataset is limited, this approach

allows the estimation process to incorporate datasets produced by

other sources in the system.

A framework for jointly recovering multiple datasets is provided

in [17] where the MC setting is extended to the tensor case. More-

over, the singular value decomposition is extended to the tensor case

in [18] which leads to the development of a tensor nuclear norm

based algorithm in [19]. Alternatively, a collective MC framework

is proposed in [20] to exploit the correlation between matrices with

shared structure. However, the common structure constraint does

not allow for sufficient generality in the definition of the correlation

structure between datasets in a smart grid context.

This paper proposes an estimation setting in which data from

multiple datasets is combined into a single data matrix that is recov-

ered using MC-based algorithms. This allows the recovery process

to exploit not only correlations within a dataset but also between

datasets in the joint estimation paradigm. Specifically, the corre-

lation between datasets is leveraged to facilitate the recovery when

the number of observations in one dataset is limited. In addition,

the fundamental limit of the joint recovery setting for two correlated

datasets is characterized within an MC framework and, based on the

geometry dictated by the fundamental limit, the joint recovery per-

formance of two MC-based algorithms is benchmarked for differ-

ent levels of correlation between the combined datasets. Numeri-

cal results show that the recently proposed Bayesian Singular Value

Theresholding (BSVT) algorithm [12] is more effective in exploit-

ing the correlation between datasets when compared to the Singular

Value Theresholding (SVT) algorithm [21].

2. SYSTEM MODEL

Consider an electricity distribution system with N low voltage (LV)

feeders. At the head of each feeder, a sensing unit measures vari-

ous electrical magnitudes, e.g., voltage, intensity, active and reactive

power at given time instants. These measures comprise the state

variables that the operator uses for control, monitoring, and man-

agement purposes. The set of observations available to the operator

is incomplete and corrupted by noise. The operator estimates the

missing data based on the available observations. In the following,

the analysis is carried out for a particular electrical magnitude, i.e.,

phase voltage.

2.1. Source Model

For a given phase voltage state variable, let m
(s)
i,j be the correspond-

ing value on phase s ∈ {A,B,C}, at feeder i ∈ {1, 2, ..., N} and

time j ∈ {1, 2, ...,M}. The matrix with the measurements for phase

s, denoted by M
(s) ∈ R

M×N , contains the aggregated measure-

ment vectors from all feeders M(s) ∆
= [m

(s)
1 ,m

(s)
2 , ...,m

(s)
N ], with

the measurement vectors given by m
(s)
i

∆
= [m

(s)
i,1 ,m

(s)
i,2 , ...,m

(s)
i,M ]T

∈ R
M . The resulting data matrices M(A), M(B), M(C) contain the

voltage measurements on phase A, B and C respectively, at time in-

stants 1, 2, ...,M for all N feeders.



(a) Sample covariance matrix of

the phase B voltage data matrix.

(b) Sample covariance matrix of

the combined phase B and C

voltage data matrices.

Fig. 1: Sample covariance matrices obtained using the real data pro-

vided by ENWL.

2.2. Real data model

Real data collected as part of the “Low Voltage Network Solutions”

project run by Electricity North West Limited (ENWL) [22], is used

in the following to model the statistical structure of the random pro-

cess governing the phase voltage state variables. The dataset con-

tains voltage measurements of phases A, B and C collected from

200 residential secondary substations across North West of England

from June 2013 to January 2014. Each substation generates a daily

file that contains the voltage measurements on all three phases.

An analysis of the distribution and sample covariance matrix of

the phase A voltage measurements in the LV dataset under consider-

ation is presented in [11]. Therein, it is shown that voltage measure-

ments can be modelled as a multivariate Gaussian random process

for i ∈ {1, 2, ..., N}. Specifically, we model the voltage measure-

ments as m
(s)
i ∼N (µs,Σs), and {mi} for i ∈ {1, 2, ..., N}, is

a sequence of independent and identically distributed random vari-

ables. Moreover, it is also shown in [11] that the sample covari-

ance matrix for phase A exhibits a structure that is approximately

Toeplitz. In addition, because the voltage data is correlated, the co-

variance matrix displays a high correlation across feeders and time

instants. It is shown in [12] that the singular value decomposition of

a 500× 500 matrix with phase A voltage measurements has a large

condition number [23].

Part of the LV data collected by ENWL is used to construct two

complete data matrices M
(B) and M

(C) with M = N = 500 that

contain phase B and phase C voltage measurements from the LV

grid. The sample covariance matrix of the data matrix M
(B) is de-

picted in Fig. 1a. As expected, and in agreement with the obser-

vation in [11], the sample covariance matrix for the phase voltage

data exhibits a structure that is approximately Toeplitz. In addition,

when the phase B and phase C data matrices are combined into a sin-

gle data matrix, i.e., M(BC) = [M(B), M(C)]T, the resulting sample

covariance matrix is depicted in Fig. 1b. Interestingly, the sample

covariance for the combined matrix is a block matrix with four ele-

ments where each element exhibits a structure that is approximately

Toeplitz. Based on this observation, the following section proposes a

general model for correlated voltage datasets generated by different

phases in smart grid systems.

2.3. Synthetic data model

A mathematical description of the model used to generate two cor-

related synthetic datasets follows. Let us denote the data matrix for

the first dataset by M1 ∈ R
M×N and the data matrix for the second

dataset by M2 ∈ R
M×N . In this setting, the combined matrix is

Fig. 2: Block diagram describing the system model for the joint re-

covery of two datasets.

denoted by M ∈ R
2M×N given by

M
∆
=

[
M1

M2

]
. (1)

Hence, the combined state variable matrix is defined as M =
[m1,m2, ...,mN ], where each state variable vector mi ∈ R

2M for

i ∈ {1, 2, ..., N} is generated by a multivariate Gaussian process

with 0 mean and covariance matrix Σ, i.e., mi∼N (0,Σ). The co-

variance matrix Σ is a block matrix in which block Σll is a Toeplitz

matrix describing the covariance matrix of the dataset l ∈ {1, 2}.

The resulting covariance matrix is given by

Σ
∆
=

[
Σ11 ψΣ11

ψΣ11 Σ22

]
, (2)

where Σll ∈ R
M×M and ψ ∈ [0, 1]. In this framework, the el-

ements of Σll are defined as (Σll)i,j
∆
= ρ

1
ζll

|i−j|
, where (Σll)i,j

denotes the entry in row i and column j of the matrix Σll with

i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . ,M}, ρ ∈ (0, 1) and ζll a de-

sign parameter. Hence, the matrix Σll is given by

Σll = Toeplitz(1, . . . , υll), (3)

where υll ∈ [0, 1) obeys

υll = ρ
1

ζll
(M−1)

. (4)

Fig. 2 describes the system model for the joint recovery of two

datasets produced in an LV distribution system. In this setting, each

phase voltage data matrix fully describes the state of the grid overM
time instants and across N feeders. However, in the acquisition pro-

cess, part of the measurements are lost and the ones that are available

are corrupted by noise. The missing data recovery strategy needs to

estimate the actual state of the grid for a noisy subset of observations.

2.4. Acquisition

The phase voltage measurements are assumed to be corrupted by

additive white Gaussian noise (AWGN) such that for each dataset the

resulting observations are given by Rl = Ml+Nl, where l ∈ {1, 2}
denotes the number of datasets and

(Nl)i,j ∼ N (0, σ2
Nl

), (5)

where i ∈ {1, 2, ...,M} and j ∈ {1, 2, ..., N}. Moreover, it is

also assumed that only a fraction of the complete set of observations

(entries in Rl) are communicated to the operator. Denote by Ωl

the subset of observed entries of the dataset l, i.e., Ωl
∆
= {(i, j) :

(Rl)i,j is observed}. Formally, the acquisition process is modelled

by the functions PΩl
: RM×N → R

M×N with l ∈ {1, 2} and

PΩl
(Rl) =

{
(Rl)i,j , (i, j) ∈ Ωl,

0, otherwise.
(6)



The observations given by (6) describe all the data from dataset l
that is available to the operator for estimation purposes. Therefore,

the recovery of the missing data is performed from the observations

PΩl
(Rl). As depicted in Fig. 2, the acquisition step is performed

independently for each dataset. After the acquisition step, the avail-

able observations from each dataset are combined into a single data

matrix, i.e.,

PΩ(R) =

[
PΩ1(R1)
PΩ2(R2)

]
∈ R

2M×N , (7)

where Ω denotes the combined set of available observations from

the two datasets. The resulting matrix PΩ(R) is used for estimation

purposes in the joint recovery paradigm.

2.5. Estimation

The estimation process for the combined matrix of measurements,

based on the available observations from each dataset is modelled

by the function g : R2M×N → R
2M×N , where Ω denotes the com-

bined set of available observations from both datasets. The estimate

M̂ = g
(
PΩ1(R1), PΩ2(R2)

)
is obtained by solving an optimiza-

tion problem based on a given optimality criterion. In the following,

the optimality criterion is the normalized mean square error (NMSE)

given by

NMSE (M; g) =
E
[
‖M− g

(
PΩ1(R1), PΩ2(R2)

)
‖2F

]

‖M‖2F
, (8)

where ‖ · ‖F denotes the Frobenius norm.

3. RECOVERING MISSING DATA USING MATRIX

COMPLETION

Given a matrix M of size 2M×N , and observations PΩ(M), the re-

covery of the missing entries is not feasible in the general case. How-

ever, when M is low rank or approximately low rank, it is shown in

[14] that if the entries on Ω are sampled uniformly at random, the

missing entries are recovered with high probability by solving the

following optimization problem:

minimize
X

‖X‖∗

subject to PΩ(X) = PΩ(M),
(9)

where ‖X‖∗ denotes the nuclear norm of the matrix X. To simplify

the notation, let us assume that 2M ≥ N . We proceed to present the

two MC-based algorithms used to assess the joint recovery perfor-

mance. Namely, the SVT algorithm proposed in [21] and the BSVT

approach presented in [12].

3.1. Singular Value Theresholding

SVT is an MC-based algorithm [21] which produces a sequence of

matrices X(k) that converges to the unique solution of the following

optimization problem:

minimize
X

τ‖X‖∗ +
1

2
‖X‖2F

subject to PΩ(X) = PΩ(M).
(10)

Note that when τ → ∞, the optimization problem in (10) converges

to the nuclear norm minimization problem in (9). The iterations of

the SVT algorithm are:

{
X

(k) = Dτ (Y
(k−1)),

Y
(k) = Y

(k−1) + δs
(
PΩ(M)− PΩ(X

(k))
)
,

(11)

where Y
(0) = 0 is used for initialization, δs is the step size that

obeys 0 < δs < 2, and the soft-thresholding operator, Dτ that

shrinks the singular values of Y(k−1) towards zero [21].

Interestingly, the choice of τ is important to guarantee a success-

ful recovery, since large values guarantee a low-rank matrix estimate

but for values larger than max
i

(σi(Y)) all the singular values van-

ish. In [21], the proposed threshold is τ = 5N . However, simulation

results presented in [11] show that τ = 5N gives suboptimal perfor-

mance when the number of missing entries is large. The main short-

coming of the SVT algorithm is the lack of guidelines for tuning the

threshold τ . This problem is addressed in [12] where a new algo-

rithm is proposed to adapt the recovery to the dataset by leveraging

knowledge of the second order statistics.

3.2. Bayesian Singular Value Theresholding

BSVT is an MC-based algorithm [12] that is able to optimize the

value of τ at each iteration using additional prior knowledge in

the form of second order statistics. The optimization of the soft-

theresholding step is performed using Stein's unbiased risk estimate

(SURE) [24] for which a closed-form expression is presented in

[25]. A detailed description of the BSVT algorithm is presented in

[12] but we reproduce the algorithm below to aid with the presen-

tation. Note that DLMMSE represents the average noise per entry in

Ωc.

The main advantage of the BSVT algorithm is that the thresh-

old is optimized at each iteration. This is achieved by incorporating

the prior knowledge about the matrix in the form of second order

statistics via the introduction of the SURE and linear minimum mean

square error (LMMSE) steps. Admittedly, this approach requires ad-

ditional knowledge that is not necessary when using the SVT algo-

rithm. However, it is shown in [12] that the introduction of the prior

knowledge enables a robust recovery of the missing entries.

Algorithm 1 Bayesian Singular Value Thresholding [12]

Input: set of observations Ω, observed entries PΩ(R), mean 0, co-

variance matrix Σ, step size δb, tolerance ǫ, and maximum iter-

ation count kmax

Output: M̂BSVT

1: Set Y0 = 0

2: Set Z0 = 0

3: Set τ = 0
4: Set Ωc = {1, 2, ..., 2M} × {1, 2, ..., N} \ Ω
5: for k = 1 to kmax do

6: Compute [U,S,V] = svd(Z(k−1))

7: Set X(k) =
∑N

j=1 max(0, σj(Z
(k−1))− τ (k−1))ujvj

8: if ‖PΩ(X
(k) −R)‖F /‖PΩ(R)‖F ≤ ǫ then break

9: end if

10: Set Y(k) = Y
(k−1) + δb

(
PΩ(R)− PΩ(X

(k))
)

11: Set L(k) = ΣΩcΩΣ
−1
ΩΩY

(k)

12: Set Z(k) = Y
(k) + L

(k)

13: Set σ2
Z(k) = (‖Y(k) − PΩ(R)‖2F + |Ωc|DLMMSE)/2MN

14: Set τ (k) = arg min
τ

SURE(Dτ )(Z
(k))

15: end for

16: Set M̂BSVT = X
(k)

4. JOINT RECOVERY OF MISSING DATA IN TWO

DATASETS

In this section, an estimation framework for recovering missing data

from different datasets is proposed. The estimation framework fa-

cilitates exploiting the correlation between datasets for a wide range



of correlation structures. We begin by noting that in the joint re-

covery case, there are two types of correlation between the entries

of the combined matrix. First, the intra-correlation that refers to the

correlation between the entries within each dataset. This is the type

of correlation that is exploited in the independent recovery scenario,

i.e., when the missing entries from each dataset are recovered using

only available observations from that dataset. Second, the cross-

correlation defined as the correlation between the data points from

the two different datasets. In contrast to the independent recovery

case, a joint recovery technique needs to account for both types of

correlation. By considering the cross-correlation, the recovery pro-

cess leverages on other types of data in order to recover the datasets

with limited available observations.

In an MC setting, the minimum number of observations required

depends on the size and the rank of the matrix [14]. The combination

of the datasets into a single matrix increases the size of the matrix,

and therefore, the fundamental limit for the joint recovery case de-

pends on the tradeoff between the size and the rank of the combined

matrix, and the number of observations available for each dataset.

Note that the rank of the combined matrix depends on both the intra-

and the cross-correlation. The following lemma provides lower and

upper bounds for the rank of the combined matrix based on the in-

dividual rank of the matrices. To that end, let us denote rank of the

matrices by rank(M1) = r1, rank(M2) = r2, and rank(M) = r.

Lemma 1. Let M1 ∈ R
M×N and M2 ∈ R

M×N . Define the com-

bined matrix M =

[
M1

M2

]
∈ R

2M×N . Then, the following holds:

max(r1, r2) ≤ r ≤ r1 + r2. (12)

Proof. Please refer to [26].

Based on the insight provided by Lemma 1, the intra-correlation de-

termines the rank of the matrices M1 and M2 which define the lower

and upper bounds on r. A smaller value of intra-correlation in one of

the datasets results in a larger lower bound for r. On the other hand,

the cross-correlation governs the value of r within the limits defined

by Lemma 1. Indeed, a larger value of cross-correlation results in

a value of r that is closer to the lower bound while a smaller value

of cross-correlation generates a combined matrix with a rank that

is closer to the upper bound. In other words, the intra-correlation

defines the limit values of r for which recovery is feasible and the

cross-correlation governs the value of r within the limit.

In [27] it is shown that the low rank matrices M1 and M2 can

be successfully recovered independently when the number of obser-

vations for the first matrix, denoted by k1, satisfies

k1 > (M +N − r1)r1, (13)

and the number of available observations for the second matrix, de-

noted by k2, obeys

k2 > (M +N − r2)r2. (14)

This result is based on the assumption that for the random matrices

M1 and M2 there exist the σ-measures µ1 and µ2, respectively,

and that both measures admit a Lebesgue decomposition. For the

combined matrix M, the σ-measure is obtained as the product of the

measures of M1 and M2 [28], which yields µ = µ1×µ2. Moreover,

since µ is a σ-measure it also admits a Lebesgue decomposition [29]

and [30]. Hence, the result in [27] applies for the combined matrix

M without any additional assumptions, i.e.,

k1 + k2 > (2M +N − r)r. (15)

Fig. 3: Example of recovery regions imposed by the fundamental

limit for the recovery of the matrices M1, M2 and M.

Fig. 3 depicts the inequalities in (13), (14) and (15) that describe

the lower bound on the number of observations required to recover

the matrices M1, M2 and M, respectively. The bounds divide the

(k1, k2) plane into seven regions that correspond to different recov-

ery scenarios for the independent and joint estimation settings. The

seventh region, i.e., R7, corresponds to the case in which the inde-

pendent recovery of each dataset is not possible but the joint recovery

is feasible. In other words, the existence of region R7 is equivalent

to the case in which it is beneficial to jointly recover the two datasets.

Note that when the rank of the combined matrix increases, the line

described by (2M + N − r)r = k1 + k2 is shifted towards larger

values which for values of r larger than a given threshold induces an

empty region R7. The value of the threshold is given by the suffi-

cient condition in Theorem 1. It is also worth noting that based on

the regions depicted in Fig. 3, the number of cases in which the joint

recovery is feasible is larger than the number of cases in which the

independent recovery of the datasets is possible. The following the-

orem provides the necessary and sufficient conditions to guarantee

that the joint recovery is beneficial.

Theorem 1. Let M1,M2 ∈ R
M×N , with rank r1 and r2. Then, the

joint recovery of the two matrices requires fewer observations than

the independent recovery if

1−
max(r1, r2)

min(r1, r2)
>

min(r1, r2)−N

M
, (16)

and the rank of the combined matrix satisfies

r <M +
1

2
N −

1

2
(M +N − 2r1 − 2r2)

×

(
1 +

3M2 + 2MN − 8r1r2
(M +N − 2r1 − 2r2)2

)1/2

.

(17)

Proof. Please refer to [26].

Note that the necessary condition from Theorem 1, that is the in-

equality in (16) depends only on the matrices M1 and M2 and does

not depend on the combined matrix M. In contrast, the sufficient

condition in (17) provides an upper bound for the rank of the com-

bined matrix such that the total number of observations required for

the joint recovery is fewer when compared to the independent recov-

ery case. Theorem 1 provides a necessary and sufficient condition

for the joint recovery of two data matrices to be beneficial.



5. NUMERICAL RESULTS

This section presents a numerical evaluation of the joint recovery

performance for two datasets. The matrices used for the simulations

are generated using the model described in Section 2.3 and the size

of the matrices M1 and M2 is fixed such that M = 50 and N =
100, respectively. Hence, the joint matrix M is a square matrix of

size 100. The range of rank values selected aims to characterize the

joint recovery in two scenarios: when the two combined matrices

have the same rank, i.e., r1 = 6 and r2 = 6, and when the ratio

between the two rank values is small, i.e., r1 = 6 and r2 = 9.

To facilitate this, the synthetic data model presented in Section 2.3

is used to generate correlated data matrices with the rank values of

interest.

5.1. Simulation framework

Using the mathematical model defined in Section 2.3, the covariance

matrix for the combined matrix M is given by (2) where the intra-

correlation between the state variables in M1 is modelled by the υ11
parameter in (4), the intra-correlation between the state variables in

M2 is modelled by the υ22 parameter in (4) and the cross-correlation

between M1 and M2 is modelled by ψ in (2). The numerical anal-

ysis shows that a larger value of υll results in a more correlated ma-

trix Ml and consequently a smaller value for rl, where l ∈ {1, 2}.

Moreover, the cross-correlation between M1 and M2 increases with

the value of ψ which leads to a smaller value for r within the bounds

defined by Lemma 1.

The matrix M generated using the model in (2) is not exactly

low rank. Instead, it can be well approximated by a low rank matrix.

Let us denote by M̃(r) the low rank approximation of rank r ob-

tained by vanishing the smallest N − r singular values of the matrix

M. In the following, r is defined as the minimum value for which

the NMSE between the matrix M and the low rank approximation

of rank r, i.e., M̃(r), is below 10−3. Consequently, the model in

(2) is used to generate data matrices M such that the low rank ap-

proximations M̃1(r1), M̃2(r2) and M̃(r) have the intended ranks.

Moreover, the low rank approximation of the combined matrix, i.e.,

M̃(r), is used to evaluate the numerical performance of both BSVT

and SVT in exploiting the correlation between the two datasets. The

recovery performance of both algorithms is averaged over ten real-

izations of Ω, where the locations of the available entries are sampled

uniformly at random in each dataset.

In the following, a numerical analysis for the joint recovery per-

formance of SVT and BSVT is presented for the cases in which the

rank values for the combined matrices are: r1 = 6, r2 = 6, r = 9
and r1 = 6, r2 = 9, r = 10. The choice of rank for the combined

matrix resembles a high cross-correlation case in which the value of

r satisfies the condition imposed by Theorem 1. We consider a low

noise regime for which SNR=50 dB in both datasets to emphasize

the impact of the intra- and cross-correlation in the recovery process,

where the SNR in dataset l ∈ {1, 2} is defined as

SNRl
∆
= 10log10

1
M

Tr(Σll)

σ2
Nl

, (18)

where Σll is defined in (3) and σ2
Nl

is described in (5). A wider

range of rank values and noise regimes is presented in [31]. The

efficiency in exploiting the cross-correlation between the combined

datasets is evaluated by comparing the recovery performance across

different sampling regimes in which the number of observations in

Ω is constant but the ratio between the number of available entries in

Fig. 4: Joint recovery error using BSVT, measured by NMSE, when

r1 = 6, r2 = 6, r = 9 and SNR=50 dB.

Fig. 5: Joint recovery error using SVT, measured by NMSE, when

r1 = 6, r2 = 6, r = 9 and SNR=50 dB.

each dataset varies. The cross-correlation is successfully exploited

when the recovery error is similar across different sampling regimes.

Fig. 4 depicts the performance of the BSVT algorithm when

r1 = 6, r2 = 6, r = 9 and SNR=50 dB. Interestingly, the contour

lines for the 10−4 and 10−3 recovery error exhibit a similar shape

to the line depicted by (2M + N − r)r = k1 + k2 in Fig. 3. This

suggests that the BSVT algorithm successfully exploits the cross-

correlation in that region and obtains a similar recovery performance

tradeoff when the ratio between k1 and k2 varies for a fixed value of

k1 + k2. In contrast, the contour lines for 10−3, 10−2 and 10−1

SVT recovery error depicted in Fig. 5 exhibit a similar shape to the

region R4 in Fig. 3 which corresponds to the independent recovery

area in which the cross-correlation is not exploited. Based on this

observation, it is reasonable to assume that SVT is not effective in

exploiting the cross-correlation as the recovery error changes with

the ratio between k1 and k2 for a fixed total number of observations.

Fig. 6 depicts the performance of the BSVT algorithm when

r1 = 6, r2 = 9, r = 10 and SNR=50 dB. In line with the case

discussed in Fig. 4, the contour lines for the 10−4 and 10−3 recov-



Fig. 7: Joint recovery error using SVT, measured by NMSE, when

r1 = 6, r2 = 9, r = 10 and SNR=50 dB.

Fig. 6: Joint recovery error using BSVT, measured by NMSE, when

r1 = 6, r2 = 9, r = 10 and SNR=50 dB.

ery error exhibit a similar shape to the fundamental limit in Fig. 3.

This suggests that the BSVT approach is able to exploit the cross-

correlation between the combined datasets in the almost noiseless

regime for both rank cases considered. In Fig. 7 the performance of

the SVT algorithm is depicted for the case in which r1 = 6, r2 = 9,

r = 10 and SNR=50 dB. In this case, the shape of the contour lines

for 10−3 and 10−2 recovery error is similar to the shape of the region

R4 in Fig. 3 which suggests that the SVT algorithm is not efficient in

exploiting cross-correlation. Consequently, the BSVT algorithm is

able to exploit the cross-correlation between the combined datasets

more effectively when compared to the SVT approach in the almost

noiseless regime. The gain in recovery performance is facilitated

by the prior knowledge incorporated in the structure of the BSVT

algorithm.

6. CONCLUSION

The fundamental limits for the joint recovery of two datasets have

been characterized in terms of the rank of the single and combined

data matrices. Theoretical conditions are derived for the case in

which the joint recovery of two datasets requires less observations

compared to the independent recovery case. Based on the insight

provided by the fundamental limit, the number of cases in which the

joint recovery is feasible is significantly larger when compared to the

independent recovery setting.

A model for correlated datasets is proposed. Numerical results

show that the correlation between different types of data is exploited

by leveraging the information provided by the dataset with fewer

missing entries to enable the recovery of the other dataset. More-

over, in contrast to the SVT algorithm, the performance of the BSVT

approach matches the geometry imposed by the fundamental limit

which suggests that BSVT is indeed better suited to exploit the cor-

relation between datasets.
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