1,703 research outputs found
FALCON: a concept to extend adaptive optics corrections to cosmological fields
FALCON is an original concept for a next generation spectrograph at ESO VLT
or at future ELTs. It is a spectrograph including multiple small integral field
units (IFUs) which can be deployed within a large field of view such as that of
VLT/GIRAFFE. In FALCON, each IFU features an adaptive optics correction using
off-axis natural reference stars in order to combine, in the 0.8-1.8 \mu m
wavelength range, spatial and spectral resolutions (0.1-0.15 arcsec and
R=10000+/-5000). These conditions are ideally suited for distant galaxy
studies, which should be done within fields of view larger than the galaxy
clustering scales (4-9 Mpc), i.e. foV > 100 arcmin2. Instead of compensating
the whole field, the adaptive correction will be performed locally on each IFU.
This implies to use small miniaturized devices both for adaptive optics
correction and wavefront sensing. Applications to high latitude fields imply to
use atmospheric tomography because the stars required for wavefront sensing
will be in most of the cases far outside the isoplanatic patch.Comment: To appear in the Backaskog "Second Workshop on ELT" SPIE proceeding
A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks
We consider the problem of optimally designing a body wireless sensor
network, while taking into account the uncertainty of data generation of
biosensors. Since the related min-max robustness Integer Linear Programming
(ILP) problem can be difficult to solve even for state-of-the-art commercial
optimization solvers, we propose an original heuristic for its solution. The
heuristic combines deterministic and probabilistic variable fixing strategies,
guided by the information coming from strengthened linear relaxations of the
ILP robust model, and includes a very large neighborhood search for reparation
and improvement of generated solutions, formulated as an ILP problem solved
exactly. Computational tests on realistic instances show that our heuristic
finds solutions of much higher quality than a state-of-the-art solver and than
an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G.
Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp.
1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is
available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1
The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR
A large fraction of the present-day stellar mass was formed between z=0.5 and
z~3 and our understanding of the formation mechanisms at work at these epochs
requires both high spatial and high spectral resolution: one shall
simultaneously} obtain images of objects with typical sizes as small as
1-2kpc(~0''.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The
obvious instrumental solution to adopt in order to tackle the science goal is
therefore a combination of multi-object 3D spectrograph with multi-conjugate
adaptive optics in large fields. A partial, but still competitive correction
shall be prefered, over a much wider field of view. This can be done by
estimating the turbulent volume from sets of natural guide stars, by optimizing
the correction to several and discrete small areas of few arcsec2 selected in a
large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and
eventually, up to the 60th Zernike modes. Simulations on real extragalactic
fields, show that for most sources (>80%), the recovered resolution could reach
0".15-0".25 in the J and H bands. Detection of point-like objects is improved
by factors from 3 to >10, when compared with an instrument without adaptive
correction. The proposed instrument concept, FALCON, is equiped with deployable
mini-integral field units (IFUs), achieving spectral resolutions between R=5000
and 20000. Its multiplex capability, combined with high spatial and spectral
resolution characteristics, is a natural ground based complement to the next
generation of space telescopes.Comment: ESO Workshop Proceedings: Scientific Drivers for ESO Future VLT/VLTI
Instrumentation, 10 pages and 5 figure
Magnetic and electronic properties of lithium cobalt oxide substituted by nickel
[Abstract] We measured susceptibility, electron-spin resonance, magnetization and electrical conductivity of LiCo1−yNiyO2 powders synthesized by wet-chemistry method using succinic acid as chelating agent. We found unusual properties in the nickel-rich LiCo0.2Ni0.8O2, which shows several resonance lines as a function of the temperature in the range 3.5–300 K. The signal at low magnetic field is attributed to the magnetic domains in the nanostructured sample. The two other lines correspond to the typical ferromagnetic signal observed in powdered compounds. In the temperature range 120–300 K, the unique ESR line centered at 315 mT is the paramagnetic signal with a gyromagnetic factor g=2.12, which is in good agreement with the presence of a high concentration of Ni3+ (3d7) ions. In the nickel-rich oxide, LiNi0.8Co0.2O2, the magnetic data are qualitatively well-described by the model proposed by Drillon and Panissod for a 3D ferromagnetic order.Spanish and French Foreign Office; HF 1999-0101Spanish and French Foreign Office; PAI Picasso 00717T
Adaptive Optics for Astronomy
Adaptive Optics is a prime example of how progress in observational astronomy
can be driven by technological developments. At many observatories it is now
considered to be part of a standard instrumentation suite, enabling
ground-based telescopes to reach the diffraction limit and thus providing
spatial resolution superior to that achievable from space with current or
planned satellites. In this review we consider adaptive optics from the
astrophysical perspective. We show that adaptive optics has led to important
advances in our understanding of a multitude of astrophysical processes, and
describe how the requirements from science applications are now driving the
development of the next generation of novel adaptive optics techniques.Comment: to appear in ARA&A vol 50, 201
Detection of the Sgr A* activity at 3.8 and 4.8 microns with NACO
L'-band (lambda=3.8 microns) and M'-band (lambda=4.8 microns) observations of
the Galactic Center region, performed in 2003 at VLT (ESO) with the adaptive
optics imager NACO, have lead to the detection of an infrared counterpart of
the radio source Sgr A* at both wavelengths. The measured fluxes confirm that
the Sgr A* infrared spectrum is dominated by the synchrotron emission of
nonthermal electrons. The infrared counterpart exhibits no significant short
term variability but demonstrates flux variations on daily and yearly scales.
The observed emission arises away from the position of the dynamical center of
the S2 orbit and would then not originate from the closest regions of the black
hole.Comment: 5 pages, 3 figures, accepted in Astronomy & Astrophysic
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
EAGLE multi-object AO concept study for the E-ELT
EAGLE is the multi-object, spatially-resolved, near-IR spectrograph
instrument concept for the E-ELT, relying on a distributed Adaptive Optics,
so-called Multi Object Adaptive Optics. This paper presents the results of a
phase A study. Using 84x84 actuator deformable mirrors, the performed analysis
demonstrates that 6 laser guide stars and up to 5 natural guide stars of
magnitude R<17, picked-up in a 7.3' diameter patrol field of view, allow us to
obtain an overall performance in terms of Ensquared Energy of 35% in a 75x75
mas^2 spaxel at H band, whatever the target direction in the centred 5' science
field for median seeing conditions. The computed sky coverage at galactic
latitudes |b|~60 is close to 90%.Comment: 6 pages, to appear in the proceedings of the AO4ELT conference, held
in Paris, 22-26 June 200
Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.
Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers
- …
