333 research outputs found
Sparse odor coding in awake behaving mice
Responses of mitral cells represent the results of the first stage of odor processing in the olfactory bulb. Most of our knowledge about mitral cell activity has been obtained from recordings in anesthetized animals. We compared odor-elicited changes in firing rate of mitral cells in awake behaving mice and in anesthetized mice. We show that odor-elicited changes in mitral cell firing rate were larger and more frequently observed in the anesthetized than in the awake condition. Only 27% of mitral cells that showed a response to odors in the anesthetized state were also odor responsive in the awake state. The amplitude of their response in the awake state was smaller, and some of the responses changed sign compared with their responses in the anesthetized state. The odor representation in the olfactory bulb is therefore sparser in awake behaving mice than in anesthetized preparations. A qualitative explanation of the mechanism responsible for this phenomenon is proposed
Dynamics of odor sampling strategies in mice
Mammalian olfactory receptor neurons in the nasal cavity are stimulated by odorants carried by the inhaled air and their activation is therefore tied to and driven by the breathing or sniffing frequency. Sniffing frequency can be deliberately modulated to alter how odorants stimulate olfactory receptor neurons, giving the animal control over the frequency of odorant exposure to potentially aid odorant detection and discrimination. We monitored sniffing behaviors and odorant discrimination ability of freely-moving mice while they sampled either decreasing concentrations of target odorants or sampled a fixed target odorant concentration in the presence of a background of increasing odorant concentrations, using a Go-NoGo behavioral paradigm. This allowed us to ask how mice alter their odorant sampling duration and sampling (sniffing) frequency depending on the demands of the task and its difficulty. Mice showed an anticipatory increase in sniffing rate prior to odorant exposure and chose to sample for longer durations when exposed to odorants as compared to the solvent control odorant. Similarly, mice also took more odorant sampling sniffs when exposed to target odorants compared to the solvent control odorant. In general, odorant sampling strategies became more similar the more difficult the task was, e.g. the lower the target odorant concentration or the lower the target odorant contrast relative to the background odorant, suggesting that sniffing patterns are not preset, but are dynamically modulated by the particular task and its difficulty
Odor sampling strategies in mice with genetically altered olfactory responses
Peripheral sensory cells and the central neuronal circuits that monitor environmental changes to drive behaviors should be adapted to match the behaviorally relevant kinetics of incoming stimuli, be it the detection of sound frequencies, the speed of moving objects or local temperature changes. Detection of odorants begins with the activation of olfactory receptor neurons in the nasal cavity following inhalation of air and airborne odorants carried therein. Thus, olfactory receptor neurons are stimulated in a rhythmic and repeated fashion that is determined by the breathing or sniffing frequency that can be controlled and altered by the animal. This raises the question of how the response kinetics of olfactory receptor neurons are matched to the imposed stimulation frequency and if, vice versa, the kinetics of olfactory receptor neuron responses determine the sniffing frequency. We addressed this question by using a mouse model that lacks the K+-dependent Na+/Ca2+ exchanger 4 (NCKX4), which results in markedly slowed response termination of olfactory receptor neuron responses and hence changes the temporal response kinetics of these neurons. We monitored sniffing behaviors of freely moving wildtype and NCKX4 knockout mice while they performed olfactory Go/NoGo discrimination tasks. Knockout mice performed with similar or, surprisingly, better accuracy compared to wildtype mice, but chose, depending on the task, different odorant sampling durations depending on the behavioral demands of the odorant identification task. Similarly, depending on the demands of the behavioral task, knockout mice displayed a lower basal breathing frequency prior to odorant sampling, a possible mechanism to increase the dynamic range for changes in sniffing frequency during odorant sampling. Overall, changes in sniffing behavior between wildtype and NCKX4 knockout mice were subtle, suggesting that, at least for the particular odorant-driven task we used, slowed response termination of the odorant-induced receptor neuron response either has a limited detrimental effect on odorant-driven behavior or mice are able to compensate via an as yet unknown mechanism
Formation of antiwaves in gap-junction-coupled chains of neurons
Using network models consisting of gap junction coupled Wang-Buszaki neurons,
we demonstrate that it is possible to obtain not only synchronous activity
between neurons but also a variety of constant phase shifts between 0 and \pi.
We call these phase shifts intermediate stable phaselocked states. These phase
shifts can produce a large variety of wave-like activity patterns in
one-dimensional chains and two-dimensional arrays of neurons, which can be
studied by reducing the system of equations to a phase model. The 2\pi periodic
coupling functions of these models are characterized by prominent higher order
terms in their Fourier expansion, which can be varied by changing model
parameters. We study how the relative contribution of the odd and even terms
affect what solutions are possible, the basin of attraction of those solutions
and their stability. These models may be applicable to the spinal central
pattern generators of the dogfish and also to the developing neocortex of the
neonatal rat
DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers
We have explored the abilities of all-electronic DNA-carbon nanotube (DNA-NT) vapor sensors to discriminate very similar classes ofmolecules.We screened hundreds ofDNA-NT devices against a panel of compounds chosen because of their similarities. We demonstrated that DNA-NT vapor sensors readily discriminate between series of chemical homologues that differ by single methyl groups. DNA-NT devices also discriminate among structural isomers and optical isomers, a trait common in biological olfactory systems, but only recently demonstrated for electronic FET based chemical sensors
The effects of feeding on heart activity in the terrestrial slug, Limax maximus : central and peripheral control
The role of the central nervous system (CNS) in the modulation of heart activity induced by feeding was investigated in the terrestrial slug, Limax maximus . Intact slugs and semi-intact preparations were used to examine the effects of food, non-nutritive bulk, digestive tract distension, and the concentration of hemolymph glucose on the control of heart activity. The heart rate of intact slugs increased following ingestion of food or nonnutritive bulk and in response to injections of glucose. The heart rate of semi-intact preparations increased in response to gradual crop inflation and to perfusion of the heart with a glucose solution for longer than 30 min. The present results indicate that the increase in heart rate observed in intact slugs following a meal is mediated in part by the CNS and in part is a direct response of the heart musculature. The CNS mediates an immediate response to proprioceptive input from stretch of the crop while the heart musculature responds directly to increased hemolymph glucose concentration following ingestion of food.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47091/1/359_2004_Article_BF00613977.pd
MODELING OF THE RESTORATION OF POLYDISPERSE METAL OXIDES IN THE SETTING OF IDEAL MIXING
The technology of 3d printing of complex products requires improved methods for producing powders. The best way to obtain high-quality powders is the technology of metal recovery from oxides. An example of the dynamics calculation of metal recovery from a polydisperse mixture of oxide particles in ideal mixing reactors is proposed.Технологии 3d печати сложных изделий требует совершенствования способов получения порошков. Оптимальным способом получения качественных порошков является технология восстановления металлов из оксидов. В предлагаемой работе приводится пример расчета динамики восстановления металла из полидисперсной смеси частиц оксида в реакторах идеального перемешивания
Information transmission in oscillatory neural activity
Periodic neural activity not locked to the stimulus or to motor responses is
usually ignored. Here, we present new tools for modeling and quantifying the
information transmission based on periodic neural activity that occurs with
quasi-random phase relative to the stimulus. We propose a model to reproduce
characteristic features of oscillatory spike trains, such as histograms of
inter-spike intervals and phase locking of spikes to an oscillatory influence.
The proposed model is based on an inhomogeneous Gamma process governed by a
density function that is a product of the usual stimulus-dependent rate and a
quasi-periodic function. Further, we present an analysis method generalizing
the direct method (Rieke et al, 1999; Brenner et al, 2000) to assess the
information content in such data. We demonstrate these tools on recordings from
relay cells in the lateral geniculate nucleus of the cat.Comment: 18 pages, 8 figures, to appear in Biological Cybernetic
A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes
In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered
- …