Using network models consisting of gap junction coupled Wang-Buszaki neurons,
we demonstrate that it is possible to obtain not only synchronous activity
between neurons but also a variety of constant phase shifts between 0 and \pi.
We call these phase shifts intermediate stable phaselocked states. These phase
shifts can produce a large variety of wave-like activity patterns in
one-dimensional chains and two-dimensional arrays of neurons, which can be
studied by reducing the system of equations to a phase model. The 2\pi periodic
coupling functions of these models are characterized by prominent higher order
terms in their Fourier expansion, which can be varied by changing model
parameters. We study how the relative contribution of the odd and even terms
affect what solutions are possible, the basin of attraction of those solutions
and their stability. These models may be applicable to the spinal central
pattern generators of the dogfish and also to the developing neocortex of the
neonatal rat