786 research outputs found

    Materials science experiments in space

    Get PDF
    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued

    Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    Get PDF
    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation

    Quantum Eavesdropping without Interception: An Attack Exploiting the Dead Time of Single Photon Detectors

    Full text link
    The security of quantum key distribution (QKD) can easily be obscured if the eavesdropper can utilize technical imperfections of the actual implementation. Here we describe and experimentally demonstrate a very simple but highly effective attack which even does not need to intercept the quantum channel at all. Only by exploiting the dead time effect of single photon detectors the eavesdropper is able to gain (asymptotically) full information about the generated keys without being detected by state-of-the-art QKD protocols. In our experiment, the eavesdropper inferred up to 98.8% of the key correctly, without increasing the bit error rate between Alice and Bob significantly. Yet, we find an evenly simple and effective countermeasure to inhibit this and similar attacks

    Calibration of Tethered Particle Motion Experiments

    Get PDF
    The Tethered Particle Motion (TPM) method has been used to observe and characterize a variety of protein-DNA interactions including DNA loping and transcription. TPM experiments exploit the Brownian motion of a DNA-tethered bead to probe biologically relevant conformational changes of the tether. In these experiments, a change in the extent of the bead’s random motion is used as a reporter of the underlying macromolecular dynamics and is often deemed sufficient for TPM analysis. However, a complete understanding of how the motion depends on the physical properties of the tethered particle complex would permit more quantitative and accurate evaluation of TPM data. For instance, such understanding can help extract details about a looped complex geometry (or multiple coexisting geometries) from TPM data. To better characterize the measurement capabilities of TPM experiments involving DNA tethers, we have carried out a detailed calibration of TPM magnitude as a function of DNA length and particle size. We also explore how experimental parameters such as acquisition time and exposure time affect the apparent motion of the tethered particle. We vary the DNA length from 200 bp to 2.6 kbp and consider particle diameters of 200, 490 and 970 nm. We also present a systematic comparison between measured particle excursions and theoretical expectations, which helps clarify both the experiments and models of DNA conformation

    Single metallic nanoparticle imaging for protein detection in cells

    Full text link
    We performed a visualization of membrane proteins labeled with 10-nm gold nanoparticles in cells, using an all-optical method based on photothermal interference contrast. The high sensitivity of the method and the stability of the signals allows 3D imaging of individual nanoparticles without the drawbacks of photobleaching and blinking inherent to fluorescent markers. A simple analytical model is derived to account for the measurements of the signal amplitude and the spatial resolution. The photothermal interference contrast method provides an efficient, reproducible, and promising way to visualize low amounts of proteins in cells by optical means

    From Practice to Theory: The "Bright Illumination" Attack on Quantum Key Distribution Systems

    Full text link
    The "Bright Illumination" attack [Lydersen et al., Nat. Photon. 4, 686-689 (2010)] is a practical attack, fully implementable against quantum key distribution systems. In contrast to almost all developments in quantum information processing (for example, Shor's factorization algorithm, quantum teleportation, Bennett-Brassard (BB84) quantum key distribution, the "Photon-Number Splitting" attack, and many other examples), for which theory has been proposed decades before a proper implementation, the "Bright Illumination" attack preceded any sign or hint of a theoretical prediction. Here we explain how the "Reversed-Space" methodology of attacks, complementary to the notion of "quantum side-channel attacks" (which is analogous to a similar term in "classical" - namely, non-quantum - computer security), has missed the opportunity of predicting the "Bright Illumination" attack.Comment: 17 page
    • …
    corecore