52 research outputs found

    N Delta - Transition Form Factors at Low Momentum Transfer

    Get PDF
    The three complex form factors entering the ΔNγ\Delta\to N\gamma^\ast vertex are calculated to O(ϵ3){\cal O}(\epsilon^3) in the framework of a chiral effective theory with explicit Δ\Delta(1232) degrees of freedom. Furthermore, the role of presently unknown low energy constants that affect the values of EMR and CMR is elucidated.Comment: 5 pages, 3 figures, Oral contribution given at the 8th International Conference on the Structure of Baryons (Baryons '98), Bonn, Germany, Sept. 22-26, 199

    Perturbative Computation of the Gluonic Effective Action via Polyaokov's World-Line Path Integral

    Full text link
    The Polyakov world-line path integral describing the propagation of gluon field quanta is constructed by employing the background gauge fixing method and is subsequently applied to analytically compute the divergent terms of the one (gluonic) loop effective action to fourth order in perturbation theory. The merits of the proposed approach is that, to a given order, it reduces to performing two integrations, one over a set of Grassmann and one over a set of Feynman-type parameters through which one manages to accomodate all Feynman diagrams entering the computation at once.Comment: 21 page

    Radiative Decays of Decuplet to Octet Baryons in Light Cone QCD

    Get PDF
    The radiative decays of decuplet to octet baryons are analyzed within the light cone QCD sum rules framework.The electromagnetic transition form factors for these decays are calculated up to twist four accuracy for photon wave functions as well as including first order strange quark mass corrections. A comparison of our results with predictions of lattice theory and existing experimental data is presented.Comment: 43 pages, 30 figures, uses graphicx and amssymb, included a more general analysis, Conclusions change

    Baryon form factors: Model-independent results

    Get PDF
    Baryon form factors can be analyzed in a largely model-independent fashion in terms of two complementary approaches. These are chiral perturbation theory and dispersion relations. I review the status of dispersive calculations of the nucleon electromagnetic form factors in the light of new data. Then, I present the leading one-loop chiral perturbation theory analysis of the hyperon and the strange nucleon form factors. Open problems and challenges are also discussed.Comment: 10 pp, LaTeX, 10 figures, plenary talk, NUCLEON '99, Frascati, June 1999, to appear in the proceedings (Nucl. Phys. A), typos corrected, references update

    The Delta(1232) Resonance in Chiral Effective Field Theory

    Full text link
    I discuss the problem of formulating the baryon chiral perturbation theory (χ\chiPT) in the presence of a light resonance, such as the Δ(1232)\Delta(1232), the lightest nucleon resonance. It is shown how to extend the power counting of χ\chiPT to correctly account for the resonant contributions. Recent applications of the resulting chiral effective-field theory to the description of pion production reactions in Δ\Delta-resonance region are briefly reviewed.Comment: 8 pages, 8 figs; prepared for the proceedings of the Intl Erice School ``Quarks in Hadrons and Nuclei'', 29th Course, 16--24 Sep 2007, Sicily, Ital

    Worldline Approach to Forward and Fixed Angle fermion-fermion Scattering in Yang-Mills Theories at High Energies

    Get PDF
    Worldline techniques are employed to study the general behaviour of the fermion-fermion collision amplitude at very high energies in a non-abelian gauge field theory for the forward and fixed angle scattering cases. A central objective of this work is to demonstrate the simplicity by which the worldline methodology isolates that sector of the full theory which carries the soft physics, relevant to each process. Anomalous dimensions pertaining to a given soft sector are identified and subseuently used to facilitate the renormalization group running of the respective four point functions. Gluon reggeization is achieved for forward, while Sudakov suppression is established for fixed angle scattering.Comment: 28 pages, 10 figures in three file

    Spin structure of the nucleon at low energies

    Full text link
    The spin structure of the nucleon is analyzed in the framework of a Lorentz-invariant formulation of baryon chiral perturbation theory. The structure functions of doubly virtual Compton scattering are calculated to one-loop accuracy (fourth order in the chiral expansion). We discuss the generalization of the Gerasimov-Drell-Hearn sum rule, the Burkhardt-Cottingham sum rule and moments of these. We give predictions for the forward and the longitudinal-transverse spin polarizabilities of the proton and the neutron at zero and finite photon virtuality. A detailed comparison to results obtained in heavy baryon chiral perturbation theory is also given.Comment: 29 pp, 14 fig

    Worldline approach to Sudakov-type form factors in non-Abelian gauge theories

    Get PDF
    We calculate Sudakov-type form factors for isolated spin-1/2 particles (fermions) entering non-Abelian gauge-field systems. We consider both the on- and the off-mass-shell case using a methodology which rests on a worldline casting of field theories. The simplicity and utility of our approach derives from the fact that we are in a position to make, a priori, a more transparent separation (factorization), with respect to a given scale, between short- and long-distance physics than diagramatic methods.Comment: 18 pages. RevTex is used. No figure

    Ordinary and radiative muon capture on the proton and the pseudoscalar form factor of the nucleon

    Get PDF
    We calculate ordinary and radiative muon capture on the proton in an effective field theory of pions, nucleons and delta isobars, working to third and second order in the small scale expansion respectively. Preceding calculations in chiral effective field theories only employed pion and nucleon degrees of freedom and were not able to reproduce the photon spectrum in the pioneering experiment of radiative muon capture on the proton from TRIUMF. For the past few years it has been speculated that the discrepancy between theory and experiment might be due to Delta(1232) related effects, which are only included via higher order contact interactions in the standard chiral approach. In this report we demonstrate that this speculation does not hold true. We show that contrary to expectations from naive dimensional analysis isobar effects on the photon spectrum and the total rate in radiative muon capture are of the order of a few percent, consistent with earlier findings in a more phenomenological approach. We further demonstrate that both ordinary and radiative muon capture constitute systems with a very well behaved chiral expansion, both in standard chiral perturbation theory and in the small scale expansion, and present some new ideas that might be at the bottom of the still unresolved discrepancy between theory and experiment in radiative muon capture. Finally we comment upon the procedure employed by the TRIUMF group to extract new information from their radiative muon capture experiment on the pseudoscalar form factor of the nucleon. We show that it is inconsistent with the ordinary muon capture data.Comment: 22 pp, RevTeX, uses epsf, 8 figs, enlarged version, discussion of ordinary muon capture on protons substantially enlarged, accepted for publication in Nucl.Phys.A, FZJ-IKP(TH)-2000-0

    Unitary Isobar Model - MAID2007

    Full text link
    The unitary isobar model MAID2007 has been developed to analyze the world data of pion photo- and electroproduction. The model contains both a common background and several resonance terms. The background is unitarized according to the K-matrix prescription, and the 13 four-star resonances with masses below 2 GeV are described by appropriately unitarized Breit-Wigner forms. The data have been analyzed by both single-energy and global fits, and the transverse and longitudinal helicity amplitudes have been extracted for the four-star resonances below 2 GeV. Because of its inherent simplicity, MAID2007 is well adopted for predictions and analysis of the observables in pion photo- and electroproduction.Comment: 32 pages including 13 tables and 24 figure
    corecore