12 research outputs found

    A Multi-band Study of the Remarkable Jet in Quasar 4C+19.44

    Get PDF
    We present arcsecond-resolution data in the radio, IR, optical, and X-ray for 4C+19.44 (=PKS 1354+195), the longest and straightest quasar jet with deep X-ray observations. We report results from radio images with half to one arcsecond angular resolution at three frequencies, plus Hubble Space Telescope and Spitzer data. The Chandra data allow us to measure the X-ray spectral index in 10 distinct regions along the 18'' jet and compare with the radio index. The radio and X-ray spectral indices of the jet regions are consistent with a value of α=0.80\alpha =0.80 throughout the jet, to within 2σ2\sigma uncertainties. The X-ray jet structure to the south extends beyond the prominent radio jet and connects to the southern radio lobe, and there is extended X-ray emission, both in the direction of the unseen counter-jet, and also coincident with the northern radio lobe. This jet is remarkable because its straight appearance over a large distance allows the geometry factors to be taken as fixed along the jet. Using the model of inverse Compton scattering of the cosmic microwave background (iC/CMB) by relativistic electrons, we find that the magnetic field strengths and Doppler factors are relatively constant along the jet. If instead the X-rays are synchrotron emission, they must arise from a population of electrons distinct from the particles producing the radio synchrotron spectrum

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Revealing X-ray luminous AGN in apparent starburst galaxies

    No full text
    It is commonly assumed in deep survey work that all galaxies with X-ray luminosities above about 1042ergs-1 harbour AGN, regardless of their optical spectrum, due to the absence of starburst galaxies in the local Universe reaching such extreme luminosities. We investigate the validity of this assumption using new Chandra and XMM-Newton observations of three relatively nearby (z∼0.1) starburst galaxies, chosen on the basis of their SDSS optical spectrum, and their coincidence with a bright X-ray source from the 2XMMp catalogue. If originating from the galaxy in question, the X-ray luminosity is in each case greater than 1042ergs-1 (and in one case reaches 1043ergs-1), meaning these would be the most X-ray luminous starburst galaxies yet discovered if no AGN were present. However, the new X-ray data shows two of the three sources to display X-ray spectral and temporal variability between observations, with all three appearing point-like at Chandra resolution. Furthermore they are spectrally dissimilar to starburst X-ray emission, possessing power-law dominated spectra more reminiscent of AGN. We therefore conclude that otherwise innocuous AGN are indeed fuelling the X-ray emission from these galaxies, and that the assumption starburst galaxies do not exceed 1042ergs-1 remains observationally justified

    On the nature of high X-ray luminosities in Sloan Digital Sky Survey galaxies

    Get PDF
    Surveys have revealed a class of object displaying both high X-ray luminosities (LX > 1042 erg s−1) and a lack of a discernible active galactic nucleus (AGN) in the optical band. If these sources are powered by star formation activity alone, they would be the most extreme X-ray luminosity star-forming galaxies known. We have investigated the mechanism driving the X-ray luminosities of such galaxies by studying the X-ray emission of three moderate redshift (z∼ 0.1) examples of this class, selected from a cross-correlation of the Sloan Digital Sky Survey Data Release 5 (SDSS-DR5) and XMM–Newton serendipitous survey (2XMMp-DR0) catalogues. X-ray spatial and long-term variability diagnostics of these sources suggest that they are compact X-ray emitters. This result is supported by the detection of rapid short-term variability in an observation of one of the sources. The X-ray spectra of all three sources are best fitted with a simple absorbed power-law model, thus betraying no significant signs of star formation. These results indicate that the X-ray emission is powered by AGN activity. But why do these sources not display optical AGN signatures? We show that the most likely explanation is that the optical AGN emission lines are being diluted by star formation signatures from within their host galaxies

    Searching for Compton-thick active galactic nuclei at z similar to 0.1

    Full text link
    Using a suite of X-ray, mid-infrared (mid-IR) and optical active galactic nuclei (AGN) luminosity indicators, we search for Compton-thick AGNs with intrinsic L-X > 1042 erg s-1 at z similar to 0.03-0.2, a region of parameter space which is currently poorly constrained by deep narrow-field and high-energy (E > 10 keV) all-sky X-ray surveys. We have used the widest XMM-Newton survey (the serendipitous source catalogue) to select a representative subsample (14; approximate to 10 per cent) of the 147 X-ray undetected candidate Compton-thick AGNs in the Sloan Digital Sky Survey (SDSS) with f(X)/f([O III]) 1.5 x 10(24) cm(-2). Under the reasonable assumption that our 14 AGNs are representative of the overall X-ray undetected AGN population in the SDSS-XMM parent sample, we find that greater than or similar to 20 per cent of the optical type-2 AGN population are likely to be obscured by Compton-thick material. This implies a space density of log(Phi) greater than or similar to -4.9Mpc(-3) for Compton-thick AGNs with L-X greater than or similar to 10(42) erg s(-1) at z similar to 0.1, which we suggest may be consistent with that predicted by X-ray background synthesis models. Furthermore, using the 6-mu m continuum luminosity to infer the intrinsic AGN luminosity and the stellar velocity dispersion to estimate M-BH, we find that the most conservatively identified Compton-thick AGNs in this sample may harbour some of the most rapidly growing black holes (median M-BH approximate to 3 x 10(7) M-circle dot) in the nearby Universe, with a median Eddington ratio of eta approximate to 0.2

    Modeling x-ray emission of a straight jet : PKS 0920-397

    No full text
    Original article can be found at : http://www.worldscinet.com/ Copyright World Scientific [Full text of this article is not available in the UHRA]We summarize a study of PKS 0920-397 using our 42 ks Chandra observation in conjunction with our ATCA 20GHz image, and HST/ACS F814W and F475W images. We investigate the hypothesis that the jet X–ray emission is due to inverse-Compton (IC) scattering on the cosmic microwave background (CMB) from the same population of relativistic electrons that give rise to the radio emission. To calculate parameters intrinsic to the source, one must finesse the fact that we do not know the true angle of the jet to our line of sight. Typical assumptions are that the Doppler factor equals the bulk Lorentz factor, or that the Lorentz factor takes some fixed numerical value. While giving useful estimates, neither assumption can be exact in general. We try different constraints to determine the jet quantities. It is plausible that the kinetic flux is constant along the jet, prior to a terminal hotspot or lobe, and with minimal bending of the jet. Alternatively, because PKS 0920-397 appears straight in projection on the sky, we might assume the jet maintains a constant angle to our line of sight. Either approach gives bulk Lorentz factors of 6 to 8, with kinetic energy flux of order 1046 erg s-1, and with the jet at an angle 2° to 4° from our line of sight.Peer reviewe

    Space Telescope and Optical Reverberation Mapping Project. I:Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    Get PDF
    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and broad emission lines, with amplitudes ranging from ∼30% to a factor of two in the emission lines and a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He ii λ1640 lagging behind the continuum by ∼2.5 days and Ly λ1215, C iv λ1550, and Si iv λ1400 lagging by ∼5-6 days. The relationship between the continuum and emission lines is complex. In particular, during the second half of the campaign, all emission-line lags increased by a factor of 1.3-2 and differences appear in the detailed structure of the continuum and emission-line light curves. Velocity-resolved cross-correlation analysis shows coherent structure in lag versus line of sight velocity for the emission lines; the high-velocity wings of C iv respond to continuum variations more rapidly than the line core, probably indicating higher velocity broad-line region clouds at smaller distances from the central engine. The velocity-dependent response of Lyα, however, is more complex and will require further analysis.Publisher PDFPeer reviewe

    Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548

    Get PDF
    In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity–delay maps for the prominent broad emission lines (Lyα, C iv, He ii, and Hβ) in the spectrum of NGC 5548. These are the most detailed velocity–delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5–10 lt-day has a broad single-peaked velocity profile. The Lyα, C iv, and Hβ responses extend from inside 2 to outside 20 lt-day, with double peaks at ±2500 km s−1 in the 10–20 lt-day delay range. An incomplete ellipse in the velocity–delay plane is evident in Hβ. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay τ=(R/c)(1sini)5\tau =(R/c)(1-\sin i)\approx 5 days gives the inclination i ≈ 45°. The inferred black hole mass is MBH ≈ 7 × 107 M⊙. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C iv and Lyα line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out
    corecore