19 research outputs found

    Tuberculosis detection in paratuberculosis vaccinated calves:New alternatives against interference

    Get PDF
    Paratuberculosis vaccination in cattle has been restricted due to its possible interference with the official diagnostic methods used in tuberculosis eradication programs. To overcome this drawback, new possibilities to detect Mycobacterium bovis infected cattle in paratuberculosis vaccinated animals were studied under experimental conditions. Three groups of 5 calves each were included in the experiment: one paratuberculosis vaccinated group, one paratuberculosis vaccinated and M. bovis infected group and one M. bovis infected group. The performance of the IFN-gamma release assay (IGRA) and the skin test using conventional avian and bovine tuberculins (A- and B-PPD) but also other more specific antigens (ESAT-6/CFP10 and Rv3615c) was studied under official and new diagnostic criteria. Regarding the IGRA of vaccinated groups, when A- and B-PPD were used the sensitivity reached 100% at the first post-challenge sampling, dropping down to 40-80% in subsequent samplings. The sensitivity for the specific antigens was 80-100% and the specificity was also improved. After adapting the diagnostic criteria for the conventional antigens in the skin test, the ability to differentiate between M. bovis infected and non-infected animals included in paratuberculosis vaccinated groups was enhanced. Taking for positive a relative skin thickness increase of at least 100%, the single intradermal test specificity and sensitivity yielded 100%. The comparative intradermal test was equally accurate considering a B-PPD relative skin increase of at least 100% and greater than or equal to that produced by A-PPD. Using the specific antigens as a proteic cocktail, the specificity and sensitivity reached 100% considering the new relative and absolute cut-offs in all experimental groups (Δ≥30% and Δmm ≥ 2, respectively). Results suggest that the interference caused by paratuberculosis vaccination in cattle could be completely overcome by applying new approaches to the official tuberculosis diagnostic tests

    Differences in skin test reactions to official and defined antigens in guinea pigs exposed to non-tuberculous and tuberculous bacteria

    Get PDF
    The single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model. A standard dose (SD) of Rhodococcus equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis, M. avium subsp. avium, M. avium subsp. hominissuis, M. scrofulaceum, M. persicum, M. microti, M. caprae and M. bovis, and a higher dose (HD) of M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis were tested using PPD-B, PPD-A, P22, ESAT-6-CFP-10-Rv3615c peptide cocktail long (PCL) and fusion protein (FP). The SD of R. equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare and M. avium subsp. paratuberculosis did not cause any reactions. The HD of M. nonchromogenicum, M. monacense, M. intracellulare, and M. avium subsp. paratuberculosis and the SD of M. avium subsp. hominissuis, M. scrofulaceum and M. persicum, caused nonspecific reactions (SIT). A CITT interpretation would have considered M. avium complex and M. scrofulaceum groups negative, but not all individuals from M. nonchromogenicum HD, M. monacense HD and M. persicum SD groups. Only animals exposed to M. bovis and M. caprae reacted to PCL and FP. These results support the advantage of complementing or replacing PPD-B to improve specificity without losing sensitivity.info:eu-repo/semantics/publishedVersio

    Association between combinations of genetic polymorphisms and epidemiopathogenic forms of bovine paratuberculosis

    Get PDF
    [EN] Control of major mycobacterial diseases affecting livestock is a challenging issue that requires different approaches. The use of genetic markers for improving resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle has been explored as a promising population strategy We performed paratuberculosis epidemiopathogenic phenotypic and genotypic characterization involving 24 SNPs in six candidate genes (NOD2, CD209, SLC11A1, SP110, TLR2 and TLR4) on 502 slaughtered Friesian cows. In the current study, we investigate whether recently proposed paratuberculosis (PTB) epidemiopathogenic (EP) forms (apparently free-AF, latent-LAT and patent-PAT) could be associated with some combination of these 24 SNPs. Best EP form grouping was obtained using a combination of 5 SNPs in four genes (CD209: rs210748127; SLC11A1: rs110090506; SP110: rs136859213 and rs110480812; and TLR2: rs41830058). These groups were defined according to the level of infection progression risk to patent epidemiopathogenic forms and showed the following distributions: LOWIN (low) with 39 (8%) cases (94.9% AF/5.1% LAT/0% PAT); LATIN (low) with 17 (3%) cases (5.9% AF/94.1% LAT/0% PAT); AVERIN (average) with 413 (82%) cases (52.1% AF/38.5% LAT/9.4% PAT) and PATIN (patent) with 33 (7%) cases (36.4% AF/24.2% LAT/39.4% PAT). Age of slaughter was significantly higher for LATIN (88.3 months) compared to AVERIN (65.3 months; p = 0.0007) and PATIN (59.1 months; p = 0.0004), and for LOWIN (73.9 months) compared to PATIN (p = 0.0233), and nearly significant compared to AVERIN (p = 0.0572) These results suggest that some selected genetic polymorphisms have a potential use as markers of PTB EP forms and thus add a new tool for the control of this widespread infectionSIThis work was supported by the Ministry of Economy and Competitiveness (MINECO) (projects AGL2006-14315-C02 and RTA2014-00009), Basque Government (GV/EJ) (SAIOTEK program: SA-2010/00102), European Regional Development Fund (ERDF), and European Social Fund (ESF) is also gratefully acknowledged. Patricia V azquez was holder of a graduate fellowship award (FPI) (BES-2007-17170) from the Spanish MINEC

    Epidemiological trends of HIV/HCV coinfection in Spain, 2015-2019

    Get PDF
    Altres ajuts: Spanish AIDS Research Network; European Funding for Regional Development (FEDER).Objectives: We assessed the prevalence of anti-hepatitis C virus (HCV) antibodies and active HCV infection (HCV-RNA-positive) in people living with HIV (PLWH) in Spain in 2019 and compared the results with those of four similar studies performed during 2015-2018. Methods: The study was performed in 41 centres. Sample size was estimated for an accuracy of 1%. Patients were selected by random sampling with proportional allocation. Results: The reference population comprised 41 973 PLWH, and the sample size was 1325. HCV serostatus was known in 1316 PLWH (99.3%), of whom 376 (28.6%) were HCV antibody (Ab)-positive (78.7% were prior injection drug users); 29 were HCV-RNA-positive (2.2%). Of the 29 HCV-RNA-positive PLWH, infection was chronic in 24, it was acute/recent in one, and it was of unknown duration in four. Cirrhosis was present in 71 (5.4%) PLWH overall, three (10.3%) HCV-RNA-positive patients and 68 (23.4%) of those who cleared HCV after anti-HCV therapy (p = 0.04). The prevalence of anti-HCV antibodies decreased steadily from 37.7% in 2015 to 28.6% in 2019 (p < 0.001); the prevalence of active HCV infection decreased from 22.1% in 2015 to 2.2% in 2019 (p < 0.001). Uptake of anti-HCV treatment increased from 53.9% in 2015 to 95.0% in 2019 (p < 0.001). Conclusions: In Spain, the prevalence of active HCV infection among PLWH at the end of 2019 was 2.2%, i.e. 90.0% lower than in 2015. Increased exposure to DAAs was probably the main reason for this sharp reduction. Despite the high coverage of treatment with direct-acting antiviral agents, HCV-related cirrhosis remains significant in this population

    Medial Temporal Lobe Involvement in Human Prion Diseases: Implications for the Study of Focal Non Prion Neurodegenerative Pathology.

    No full text
    Human prion and non-prion neurodegenerative diseases share pathogenic mechanisms and neuropathological features. The lesion profile of a particular entity results from specific involvement of vulnerable neuron populations and connectivity circuits by a pathogenic protein isoform with strain-like properties. The lesion profile of the medial temporal lobe (MTL) was studied in postmortem tissue of 143 patients with human prion disease (HPD) including sporadic, genetic, and acquired forms. Most cases (90%) were classified according to PrPres type and/or PRNP codon 129 status, in addition to a full neuropathological profile. Mixed histotypes represented 29.4% of total sporadic Creutzfeldt-Jakob disease (sCJD) cases. An intensity score of involvement including spongiosis and astrogliosis was determined for the amygdala, presubiculum, subiculum, entorhinal cortex, CA1 to CA4 sectors of the hippocampal cortex, and dentate gyrus. Connectivity hubs within the MTL presented the highest scores. Diverse lesion profiles were obtained for different types and subtypes of HPD. Impact of mixed PrPres types on the MTL lesion profile was higher for sCJDMV2K cases than in other histotypes. Differences between MTL profiles was globally consistent with current evidence on specific strains in HPD. These results may be relevant for the analysis of possible strain effects in focal non-prion neurodegenerative conditions limited to the MTL.S

    Preliminary Results Indicate That Inactivated Vaccine against Paratuberculosis Could Modify the Course of Experimental Mycobacterium bovis Infection in Calves

    No full text
    Although paratuberculosis (PTB) vaccination has been recognized as an effective tool to control the disease, its use has been limited in countries undergoing bovine tuberculosis (bTB) eradication programs because of its interference with the diagnostic techniques. Due to this restraint, little is known about the effect of vaccinating against PTB on the progression of bTB infection. To assess this topic, an experimental infection was carried out including the following three groups of five calves each: non-vaccinated infected with Mycobacterium bovis (NVI), vaccinated against PTB infected with M. bovis (VI), and vaccinated against PTB non-infected (VNI). The level of infection attending to pathological and bacteriological parameters was evaluated at necropsy in collected tissue samples. Infection was confirmed in all challenged animals being the lung and thoracic regions most affected for all studied parameters. The VI group presented 15.62% less gross lesions in the thoracic region than the NVI, although no significant differences were found. Only one vaccinated animal presented gross lesions in the lung, compared to three non-vaccinated calves. NVI animals showed an average of 1.8 lung lobes with gross lesions whereas in the vaccinated group the average number of affected lobes was 0.2, representing an 89% reduction. Significant differences were not found, although a tendency was observed (p = 0.126). Pathological and culture scores showed the same tendency. Vaccination induced a 71.42 and 60% reduction in lesion and culture scores in the lung as well as a 23.75 and 26.66% decline, respectively, in the thoracic region. The VI group showed lower positivity in the rest of the areas for all measured criteria except for the head. In order to reinforce our results, further research on a larger sample size is needed, but the results from this study suggest that PTB vaccination could confer certain degree of protection against bTB infection, supporting the view that PTB vaccination could increase resistance to the main mycobacterioses that affect animals

    Latent infections are the most frequent form of paratuberculosis in slaughtered Friesian cattle

    No full text
    Paratuberculosis is a chronic mycobacterial infection causing granulomatous enteritis in ruminants, whose pathogenesis and epidemiology poses numerous challenges, including latency and reactivation. The most recent and complete classification of paratuberculosis immunopathological types in cattle recognized five categories. In this study, 1031 slaughtered Friesian cattle were submitted to serological, microbiological and pathological examinations with the aim of maximizing the rate of case detection. In most cases, infected animals had minimal lesions and almost no other proof of infection (38.9%), while the more characteristic types with the whole constellation of microbiological and immunological evidences accounted for a lower proportion (7.7%). As these findings in cattle suggest similarities with the epidemiology of tuberculosis in humans, we propose to re-group the original immunopathological types into two broader paratuberculosis epidemio-pathogenic forms or states: latent and patent. The former term would define infections with focal lesions and might constitute an apparent resilience status representing a difficult to detect reservoir of infection whose role could become critical if later immune-compromising factors lead to re-activation. The latter would group those cases with multifocal and diffuse inflammatory lesions with higher mycobacterial load and viability suggestive of a more immediate epidemiological risk. Interestingly, the relative frequency of presentation of each profile varied with age. The proportion of latent forms remained relatively constant between 33.8% and 54.3% through adulthood from 3 years of age, while patent forms were more frequent during the first years of age and tended to decrease among the oldest individuals

    Differences in skin test reactions to official and defined antigens in guinea pigs exposed to non-tuberculous and tuberculous bacteria

    Get PDF
    Altres ajuts: European Regional Development Fund EFA357/19 INNOTUBThe single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model. A standard dose (SD) of Rhodococcus equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis, M. avium subsp. avium, M. avium subsp. hominissuis, M. scrofulaceum, M. persicum, M. microti, M. caprae and M. bovis, and a higher dose (HD) of M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis were tested using PPD-B, PPD-A, P22, ESAT-6-CFP-10-Rv3615c peptide cocktail long (PCL) and fusion protein (FP). The SD of R. equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare and M. avium subsp. paratuberculosis did not cause any reactions. The HD of M. nonchromogenicum, M. monacense, M. intracellulare, and M. avium subsp. paratuberculosis and the SD of M. avium subsp. hominissuis, M. scrofulaceum and M. persicum, caused nonspecific reactions (SIT). A CITT interpretation would have considered M. avium complex and M. scrofulaceum groups negative, but not all individuals from M. nonchromogenicum HD, M. monacense HD and M. persicum SD groups. Only animals exposed to M. bovis and M. caprae reacted to PCL and FP. These results support the advantage of complementing or replacing PPD-B to improve specificity without losing sensitivity

    Cellular immune response measured as IFN-gamma release.

    No full text
    <p>Avian-PPD (gray rhombus), Bovine-PPD (black square) (A, B, C), ESAT-6/CFP10 (black square) and Rv3615c (gray rhombus) (D, E, F). Groups: vaccinated non-infected (VAC/NIN) (A and D), vaccinated infected (VAC/INFEC) (B and E) and non-vaccinated infected (NVAC/INFEC) (C and F).</p
    corecore