279 research outputs found
Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1
An ensemble of multi-layer scintillators is discussed as an option of the
high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic
measurements of neutrino-less double beta decays. A prototype detector MOON-1,
which consists of 6 layer plastic-scintillator plates, was built to study the
sensitivity of the MOON-type detector. The scintillation photon collection and
the energy resolution, which are key elements for the high-sensitivity
experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons
and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region,
respectively. The multi-layer plastic-scintillator structure with good energy
resolution as well as good background suppression of beta-gamma rays is crucial
for the MOON-type detector to achieve the inverted hierarchy neutrino mass
sensitivity.Comment: 8 pages, 16 figures, submitted to Nucl.Instrum.Met
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana
nature of the neutrino and could provide information on the absolute scale of
the neutrino mass. The initial phase of the Majorana experiment, known as the
Demonstrator, will house 40 kg of Ge in an ultra-low background shielded
environment at the 4850' level of the Sanford Underground Laboratory in Lead,
SD. The objective of the Demonstrator is to determine whether a future 1-tonne
experiment can achieve a background goal of one count per tonne-year in a
narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear
Physic
The Photon Dominated Region in the IC 348 molecular cloud
In this paper we discuss the physical conditions of clumpy nature in the IC
348 molecular cloud.
We combine new observations of fully sampled maps in [C I] at 492 GHz and
12CO 4--3, taken with the KOSMA 3 m telescope at about 1' resolution, with
FCRAO data of 12CO 1--0, 13CO 1--0 and far-infrared continuum data observed by
HIRES/IRAS. To derive the physical parameters of the region we analyze the
three different line ratios. A first rough estimate of abundance is obtained
from an LTE analysis. To understand the [C I] and CO emission from the PDRs in
IC 348, we use a clumpy PDR model. With an ensemble of identical clumps, we
constrain the total mass from the observed absolute intensities. Then we apply
a more realistic clump distribution model with a power law index of 1.8 for
clump-mass spectrum and a power law index of 2.3 for mass-size relation.
We provide detailed fits to observations at seven representative positions in
the cloud, revealing clump densities between 4 10 cm and 4
10 cm and C/CO column density ratios between 0.02 and 0.26. The
derived FUV flux from the model fit is consistent with the field calculated
from FIR continuum data, varying between 2 and 100 Draine units across the
cloud. We find that both an ensemble of identical clumps and an ensemble with a
power law clump mass distribution produce line intensities which are in good
agreement (within a factor ~ 2) with the observed intensities. The models
confirm the anti-correlation between the C/CO abundance ratio and the hydrogen
column density found in many regions.Comment: 11 pages, 8 figures, accepted by A&
Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay
We investigate numerically how accurately one could constrain the strengths
of different short-range contributions to neutrino-less double beta decay in
effective field theory. Depending on the outcome of near-future experiments
yielding information on the neutrino masses, the corresponding bounds or
estimates can be stronger or weaker. A particularly interesting case, resulting
in strong bounds, would be a positive signal of neutrino-less double beta decay
that is consistent with complementary information from neutrino oscillation
experiments, kinematical determinations of the neutrino mass, and measurements
of the sum of light neutrino masses from cosmological observations. The keys to
more robust bounds are improvements of the knowledge of the nuclear physics
involved and a better experimental accuracy.Comment: 23 pages, 3 figures. Minor changes. Matches version published in JHE
- âŠ