648 research outputs found
Hypertension-induced renal fibrosis and spironolactone response vary by rat strain and mineralocorticoid receptor gene expression
Introduction. Aldosterone promotes renal fibrosis via the mineralocorticoid receptor (MR), thus contributing to hypertension-induced nephropathy. We investigated whether MR gene expression influences renal fibrosis and MR antagonist response in a two-kidney, one-clip hypertensive rat model.
Materials and methods. Brown Norway (BN), Lewis, and ACI rats were randomised to spironolactone 20 mg/kg/day or water by gavage, starting four weeks after left renal artery clipping. Blood pressure was measured bi-weekly by tail cuff. After eight weeks of treatment, right kidneys were removed and examined for fibrosis and gene expression. Rats of each strain undergoing no intervention served as controls.
Results. Blood pressure increased similarly among strains after clipping and was unaffected by spironolactone. Hypertension caused the greatest renal fibrosis in BN rats (p \u3c 0.001 by ANOVA compared to other strains). Real-time PCR analysis showed greater renal collagen type I and MR gene expression in untreated, hypertensive BN rats (both p \u3c 0.05 compared to other strains). Spironolactone attenuated fibrosis, with similar fibrosis among strains of spironolactone-treated rats.
Conclusion. Hypertension-induced renal fibrosis was greatest in rats with the highest MR gene expression. Spironolactone abolished inter-strain differences in fibrosis. Our data suggest that MR genotype may influence aldosterone-induced renal damage, and consequently, renal response to aldosterone antagonism
Risk Factors for Post-ERCP Pancreatitis: A Prospective Multicenter Study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75082/1/j.1572-0241.2006.00380.x.pd
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector
On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater
1806-20 saturated many satellite gamma-ray detectors. This event was by more
than two orders of magnitude the brightest cosmic transient ever observed. If
the gamma emission extends up to TeV energies with a hard power law energy
spectrum, photo-produced muons could be observed in surface and underground
arrays. Moreover, high-energy neutrinos could have been produced during the SGR
giant flare if there were substantial baryonic outflow from the magnetar. These
high-energy neutrinos would have also produced muons in an underground array.
AMANDA-II was used to search for downgoing muons indicative of high-energy
gammas and/or neutrinos. The data revealed no significant signal. The upper
limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for
gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the
high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47
(-2).Comment: 14 pages, 3 figure
Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector
The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino
detector under construction at the geographic South Pole. The dominant
population of neutrinos detected in IceCube is due to meson decay in cosmic-ray
air showers. These atmospheric neutrinos are relatively well-understood and
serve as a calibration and verification tool for the new detector. In 2006, the
detector was approximately 10% completed, and we report on data acquired from
the detector in this configuration. We observe an atmospheric neutrino signal
consistent with expectations, demonstrating that the IceCube detector is
capable of identifying neutrino events. In the first 137.4 days of livetime,
234 neutrino candidates were selected with an expectation of 211 +/-
76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos
- …