64 research outputs found

    BAW-Brief Nr. 2 - Oktober 2002

    Get PDF
    565-W/B, Bautechnik, Wasserbau, Untersuchungen zum Einsatz von Schlauchwehren an Bundeswasserstraßen564-B, Bautechnik, Regelwerksituation Wasserbaustein

    Reinduction of Hedgehog Inhibitors after Checkpoint Inhibition in Advanced Basal Cell Carcinoma : A Series of 12 Patients

    Get PDF
    For patients with advanced basal cell carcinoma (aBCC) first-line treatment with hedgehog inhibitors (HHIs) and second-line treatment with PD1 inhibitors (PD1i) is available, offering combination and sequencing options. Here, we focus on the efficacy and safety of HHI reinduction after PD1i failure. Retrospective data analysis was performed with 12 patients with aBCC (locally advanced (n = 8)/metastatic (n = 4)). These patients (male:female 6:6, median age 68 years) initially received HHIs, leading to complete/partial response (66%) or stable disease (33%). Median treatment duration was 20.8 (2–64.5) months until discontinuation due to progression (n = 8), adverse events (n = 3), or patient request (n = 1). Subsequent PD1 inhibition (pembrolizumab 42%, cemiplimab 58%) yielded a partial response (8%), stable disease (33%), or progression (59%). Median treatment duration was 4.1 (0.8–16.3) months until discontinuation due to progression (n = 9), adverse events (n = 1), patient request (n = 1), or missing drug approval (n = 1). HHI reinduction resulted in complete/partial response (33%), stable disease (50%), or progression (17%). Median treatment duration was 3.6 (1–29) months. Response duration in the four responding patients was 2–29+ months. Thus, a subgroup of patients with aBCC responded to reinduction of HHI following PD1i failure. Therefore, this sequential treatment represents a feasible treatment option

    Myoglobin‐mediated lipid shuttling increases adrenergic activation of brown and white adipocyte metabolism and is as a marker of thermogenic adipocytes in humans

    Full text link
    Background: Recruitment and activation of brown adipose tissue (BAT) results in increased energy expenditure (EE) via thermogenesis and represents an intriguing therapeutic approach to combat obesity and treat associated diseases. Thermogenesis requires an increased and efficient supply of energy substrates and oxygen to the BAT. The hemoprotein myoglobin (MB) is primarily expressed in heart and skeletal muscle fibres, where it facilitates oxygen storage and flux to the mitochondria during exercise. In the last years, further contributions of MB have been assigned to the scavenging of reactive oxygen species (ROS), the regulation of cellular nitric oxide (NO) levels and also lipid binding. There is a substantial expression of MB in BAT, which is induced during brown adipocyte differentiation and BAT activation. This suggests MB as a previously unrecognized player in BAT contributing to thermogenesis. Methods and results: This study analyzed the consequences of MB expression in BAT on mitochondrial function and thermogenesis in vitro and in vivo. Using MB overexpressing, knockdown or knockout adipocytes, we show that expression levels of MB control brown adipocyte mitochondrial respiratory capacity and acute response to adrenergic stimulation, signalling and lipolysis. Overexpression in white adipocytes also increases their metabolic activity. Mutation of lipid interacting residues in MB abolished these beneficial effects of MB. In vivo, whole-body MB knockout resulted in impaired thermoregulation and cold- as well as drug-induced BAT activation in mice. In humans, MB is differentially expressed in subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots, differentially regulated by the state of obesity and higher expressed in AT samples that exhibit higher thermogenic potential. Conclusions: These data demonstrate for the first time a functional relevance of MBs lipid binding properties and establish MB as an important regulatory element of thermogenic capacity in brown and likely beige adipocytes. Keywords: energy expenditure; hemoprotein; metabolism; obesity; oxphos; uncoupling protein
    • 

    corecore