10 research outputs found

    The time is now: Achieving FH paediatric screening across Europe – The Prague Declaration

    Get PDF
    ReviewFamilial Hypercholesterolaemia (FH) is severely under-recognized, under-diagnosed and under-treated in Europe, leading to a significantly higher risk of premature cardiovascular diseases in those affected. FH stands for inherited, very high cholesterol and affects 1:300 individuals regardless of their age, race, sex, and lifestyle, making it the most common inherited metabolic disorder and a non-modifiable cardiovascular disease risk factor in the world..info:eu-repo/semantics/publishedVersio

    Mapping of clinical research on artificial intelligence in the treatment of cancer and the challenges and opportunities underpinning its integration in the European Union health sector

    No full text
    BACKGROUND: Although current efforts are made to diminish the incidence and burden of disease, cancer is still widely identified late at stage. This study aims to conduct a systematic review mapping the existent and emerging clinical research on artificial intelligence (AI) in the treatment of cancer and to underpin its integration challenges and opportunities in the European Union (EU) health sector. METHODS: A systematic literature review (SLR) evaluating global clinical trials (CTs; published between 2010 and 2020 or forthcoming) was concluded. Additionally, a horizon scanning (HS) exercise focusing on emerging trends (published between 2017 and 2020) was conducted. RESULTS: Forty-four CTs were identified and analyzed. Selected CTs were divided into three research areas: (i) potential of AI combined with imaging techniques, (ii) AI’s applicability in robotic surgery interventions and (iii) AI’s potential in clinical decision making. Twenty-one studies presented an interventional nature, nine papers were observational and 14 articles did not explicitly mention the type of study performed. The papers presented an increased heterogeneity in sample size, type of tumour, type of study and reporting of results. In addition, a shift in research is observed and only a small fraction of studies were completed in the EU. These findings could be further linked to the current socio-economic, political, scientific, technological and environmental state of the EU in regard to AI innovation. CONCLUSION: To overcome the challenges threatening the EU’s integration of such technology in the healthcare field, new strategies taking into account the EU’s socio-economic and political environment are deemed necessary

    Fast Screening of Whole Blood and Tumor Tissue for Bladder Cancer Biomarkers Using Stochastic Needle Sensors

    No full text
    Bladder cancer is one of the most common urologic malignancies, which is more frequent in men than in women. The early diagnosis for this type of cancer still remains a challenge, therefore, the development of a fast screening test for whole blood and tumor tissue samples may save lives. Four biomarkers, p53, E-cadherin, bladder tumor antigen (BTA), and hyaluronic acid were considered for the screening tests using stochastic needle sensors. Three stochastic needle sensors, based on graphite powder and modified with three types of chitosan, were designed and characterized for the screening test. The proposed sensors showed low limits of quantification, and high sensitivity and selectivity levels. The recoveries of p53, E-cadherin, BTA, and hyaluronic acid in whole blood samples and tissue samples were higher than 95.00% with a relative standard deviation lower than 1.00%

    Thanatechnology and the living dead: New concepts in digital transformation and human-computer interaction

    No full text
    In a digital society, shall we be the authors of our own experience, not only during our lifetime but also after we die? We ask this question because dying and bereavement have become even harder, and much less private, in the digital age. New big data-driven digital industries and technologies are on the rise, with promises of interactive 3D avatars and storage of digital memories of the deceased, so they can continue to exist online as the living dead in a digital afterlife. Famous rock and roll icons like Roy Orbison, Frank Zappa, Ronnie James Dio, and Amy Winehouse have famously been turned into holograms that can once again give live performances on the touring circuit, often pulling in large audiences. Death studies, dying, and grief have become virtual in the 21st century. We live in truly unprecedented times for human-computer interactions. Thanatology is the scientific study of death, dying, loss, and grief. In contrast to the biological study of biological aging (cellular senescence) and programmed cell death (apoptosis), thanatology employs multiple professional lenses, medical, psychological, physical, spiritual, ethical, descriptive, and normative. In 1997, Carla Sofka introduced the term thanatechnology as technological mechanisms such as interactive videodiscs and computer programs that are used to access information or aid in learning about thanatology topics. Onward to 2021, the advent of social media, the Internet of Things, and sensors that digitize and archive nearly every human movement and experience are taking thanatechnology, and by extension, digital transformation, to new heights. For example, what happens to digital remains of persons once they cease to exist physically? This article offers a critical study and snapshot of this nascent field, and the un-disciplinary sociotechnical issues digital thanatechnologies raise in relation to big data. We also discuss how best to critically govern this new frontier in systems science and the digital society. We suggest that new policy narratives such as (1) the right to nonparticipation in relation to information and communication technologies and (2) the planetary public goods deserve further attention to democratize thanatechnology and big data. To the extent that systems science often depends on data from online platforms, for example, in times of pandemics and ecological crises, critical thanatechnology studies, introduced in this article, is a timely and essential field of scholarship with broad importance for systems science and planetary health

    Meeting the need for a discussion of unmet medical need

    Get PDF
    As Europe and the world continue to battle against COVID, the customary complacency of society over future threats is clearly on display. Just 30 months ago, such a massive disruption to global lives, livelihoods and quality of life seemed unimaginable. Some remedial European Union action is now emerging, and more is proposed, including in relation to tackling “unmet medical need” (UMN). This initiative—directing attention to the future of treating disease and contemplating incentives to stimulate research and development—is welcome in principle. But the current approach being considered by EU officials merits further discussion, because it may prove counter-productive, impeding rather than promoting innovation. This paper aims to feed into these ongoing policy discussions, and rather than presenting research in the classical sense, it discusses the key elements from a multistakeholder perspective. Its central concern is over the risk that the envisaged support will fail to generate valuable new treatments if the legislation is phrased in a rigidly linear manner that does not reflect the serpentine realities of the innovation process, or if the definition placed on unmet medical need is too restrictive. It cautions that such an approach presumes that “unmet need” can be precisely and comprehensively defined in advance on the basis of the past. It cautions that such an approach can reinforce the comfortable delusion that the future is totally predictable—the delusion that left the world as easy prey to COVID. Instead, the paper urges reflection on how the legislation that will shortly enter the pipeline can be phrased so as to allow for the flourishing of a culture capable of rapid adaptation to the unexpected

    Death by SARS-CoV 2: a Romanian COVID-19 multi-centre comorbidity study

    No full text
    Evidence regarding the relation between SARS-CoV-2 mortality and the underlying medical condition is scarce. We conducted an observational, retrospective study based on Romanian official data about location, age, gender and comorbidities for COVID-19 fatalities. Our findings indicate that males, hypertension, diabetes, obesity and chronic kidney disease were most frequent in the COVID-19 fatalities, that the burden of disease was low, and that the prognosis for 1-year survival probability was high in the sample. Evidence shows that age-dependent pairs of comorbidities could be a negative prognosis factor for the severity of disease for the SARS-CoV 2 infection

    A framework for validating AI in precision medicine: considerations from the European ITFoC consortium

    Get PDF
    International audienceBackground: Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular-omics data from clinical data warehouses and biobanks. Methods: The European "ITFoC (Information Technology for the Future Of Cancer)" consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. Results: This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the "ITFoC Challenge". This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. Conclusions: The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care

    European groundshot-addressing Europe's cancer research challenges: a lancet oncology commission

    Get PDF
    Cancer research is a crucial pillar for countries to deliver more affordable, higher quality, and more equitable cancer care. Patients treated in research-active hospitals have better outcomes than patients who are not treated in these settings. However, cancer in Europe is at a crossroads. Cancer was already a leading cause of premature death before the COVID-19 pandemic, and the disastrous effects of the pandemic on early diagnosis and treatment will probably set back cancer outcomes in Europe by almost a decade. Recognising the pivotal importance of research not just to mitigate the pandemic today, but to build better European cancer services and systems for patients tomorrow, the Lancet Oncology European Groundshot Commission on cancer research brings together a wide range of experts, together with detailed new data on cancer research activity across Europe during the past 12 years. We have deployed this knowledge to help inform Europe's Beating Cancer Plan and the EU Cancer Mission, and to set out an evidence-driven, patient-centred cancer research roadmap for Europe. The high-resolution cancer research data we have generated show current activities, captured through different metrics, including by region, disease burden, research domain, and effect on outcomes. We have also included granular data on research collaboration, gender of researchers, and research funding. The inclusion of granular data has facilitated the identification of areas that are perhaps overemphasised in current cancer research in Europe, while also highlighting domains that are underserved. Our detailed data emphasise the need for more information-driven and data-driven cancer research strategies and planning going forward. A particular focus must be on central and eastern Europe, because our findings emphasise the widening gap in cancer research activity, and capacity and outcomes, compared with the rest of Europe. Citizens and patients, no matter where they are, must benefit from advances in cancer research. This Commission also highlights that the narrow focus on discovery science and biopharmaceutical research in Europe needs to be widened to include such areas as prevention and early diagnosis; treatment modalities such as radiotherapy and surgery; and a larger concentration on developing a research and innovation strategy for the 20 million Europeans living beyond a cancer diagnosis. Our data highlight the important role of comprehensive cancer centres in driving the European cancer research agenda. Crucial to a functioning cancer research strategy and its translation into patient benefit is the need for a greater emphasis on health policy and systems research, including implementation science, so that the innovative technological outputs from cancer research have a clear pathway to delivery. This European cancer research Commission has identified 12 key recommendations within a call to action to reimagine cancer research and its implementation in Europe. We hope this call to action will help to achieve our ambitious 70:35 target: 70% average survival for all European cancer patients by 2035

    European Groundshot-addressing Europe's cancer research challenges: a Lancet Oncology Commission

    No full text
    Cancer research is a crucial pillar for countries to deliver more affordable, higher quality, and more equitable cancer care. Patients treated in research-active hospitals have better outcomes than patients who are not treated in these settings. However, cancer in Europe is at a crossroads. Cancer was already a leading cause of premature death before the COVID-19 pandemic, and the disastrous effects of the pandemic on early diagnosis and treatment will probably set back cancer outcomes in Europe by almost a decade. Recognising the pivotal importance of research not just to mitigate the pandemic today, but to build better European cancer services and systems for patients tomorrow, the Lancet Oncology European Groundshot Commission on cancer research brings together a wide range of experts, together with detailed new data on cancer research activity across Europe during the past 12 years. We have deployed this knowledge to help inform Europe's Beating Cancer Plan and the EU Cancer Mission, and to set out an evidence-driven, patient-centred cancer research roadmap for Europe. The high-resolution cancer research data we have generated show current activities, captured through different metrics, including by region, disease burden, research domain, and effect on outcomes. We have also included granular data on research collaboration, gender of researchers, and research funding. The inclusion of granular data has facilitated the identification of areas that are perhaps overemphasised in current cancer research in Europe, while also highlighting domains that are underserved. Our detailed data emphasise the need for more information-driven and data-driven cancer research strategies and planning going forward. A particular focus must be on central and eastern Europe, because our findings emphasise the widening gap in cancer research activity, and capacity and outcomes, compared with the rest of Europe. Citizens and patients, no matter where they are, must benefit from advances in cancer research. This Commission also highlights that the narrow focus on discovery science and biopharmaceutical research in Europe needs to be widened to include such areas as prevention and early diagnosis; treatment modalities such as radiotherapy and surgery; and a larger concentration on developing a research and innovation strategy for the 20 million Europeans living beyond a cancer diagnosis. Our data highlight the important role of comprehensive cancer centres in driving the European cancer research agenda. Crucial to a functioning cancer research strategy and its translation into patient benefit is the need for a greater emphasis on health policy and systems research, including implementation science, so that the innovative technological outputs from cancer research have a clear pathway to delivery. This European cancer research Commission has identified 12 key recommendations within a call to action to reimagine cancer research and its implementation in Europe. We hope this call to action will help to achieve our ambitious 70:35 target: 70% average 10-year survival for all European cancer patients by 2035
    corecore