9 research outputs found

    Investigating undesired spatial and temporal boundary effects of congestion charging.

    Get PDF
    Two types of reported problems are related to the existing congestion charging projects that levy traffic only in a certain area within one or a few time periods during the day. One is that travellers depart earlier or later than a charging period to avoid paying full or part of the congestion charging tolls, which creates two undesired demand peaks that are often greater than available capacity. One peak comes just before the start of congestion charging and the other follows the end of it. We term this phenomenon ‘temporal boundary effect’ of congestion charging. The other reported problem is that travellers would rather stay away from a charging zone than pay congestion charging tolls, which causes undesired congestion on those roads or paths on the edge of the charging zone. We call this phenomenon ‘spatial boundary effect’ generated by congestion charging. This research investigates these boundary effects in the context of simultaneous route and departure time choice dynamic user equilibrium (SRD-DUE) network flows with an aim to gain new insights into congestion charging design. Numerical experiments investigating constant and time-varying congestion charging toll profiles are presented in this paper. This investigation shows that congestion charging may not be able to eliminate hypercongestion efficiently if schemes are not well designed, and can unfortunately give rise to undesired boundary effects and that a simply designed congestion charging scheme with small level toll or time-varying toll profiles can reduce the magnitude of boundary effects but may not be able to fully eliminate such undesired effect

    Retaining desirable properties in discretising a travel-time model

    No full text
    A recent paper introduced a new whole-link travel time model and showed that it has various desirable properties, including a first-in-first-out (FIFO) property, causality and consistency with the usual static model when flows are constant. The model is formulated as a continuous-time first-order differential equation, which does not have a general analytical solution but can be solved (approximately) numerically by forward or backward discrete-time differencing methods. Here we show that if the step sizes are not arbitrarily small then the solutions obtained by the usual differencing methods do not always preserve FIFO. In view of that, we introduce a new differencing method and prove that it always preserves FIFO and the other desirable properties exhibited by the continuous-time model. In numerical examples we illustrate how the new discrete-time differencing model eliminates FIFO violations, illustrate convergence of a solution process for the new model, and illustrate how various inflow patterns affect FIFO under the old and new differencing methods.

    Efficient Discretisation for Link Travel Time Models

    No full text

    Orbit and Clock Product Generation

    No full text
    Many sophisticated Global Navigation Satellite System (GNSS) applications require high-precision satellite orbit and clock products. The GNSS orbits and clocks are usually derived from the analysis of tracking data collected by a globally distributed GNSS receiver network. The estimation process adjusts parameters for the satellite orbits, transmitter and receiver clocks, station positions, tropospheric delays, Earth orientation, intersystem and interfrequency biases, and carrier-phase ambiguities. The estimation requires detailed modeling of geophysical processes, atmospheric and relativistic effects, receiver tracking modes, antenna phase centers, spacecraft properties, and attitude control algorithms. This chapter describes precise orbit and clock determination of the GNSS constellations as performed by the analysis centers of the International GNSS Service, including models, estimation strategies, products, and the combination of orbit and clock solutions

    Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States

    No full text

    Lasers

    No full text

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore