141 research outputs found

    Characterization and tectonic implications of Mesozoic-Cenozoic oceanic assemblages of Costa Rica and Western Panama

    Get PDF
    The Pacific face of Costa Rica and western Panama has been extensively studied because of the wide occurrence of oceanic assemblages. In Northern Costa Rica, the Santa Elena Nappe made by ultramafic and mafic associations overthrusts the Santa Rosa Accretionary Complex. The Nicoya Complex corresponds to a pre-Campanian oceanic plateau association, cropping out in the Nicoya Peninsula and the outer Herradura Block. The 89 Ma high MgO Tortugal Komatiitic Suite corresponds to 14-km long, 1.5-km wide body, with no clear relation with to the Nicoya Complex. The Tulín Formation (Maastrichtian to Lower Eocene) forms the main edifice of an accreted ancient oceanic island of the Herradura Block. The Quepos Block was formed by the accretion of a late Cretaceous-Paleocene seamount. In the Osa and Burica peninsulas, Caño Island and Golfito area, a series of Upper Cretaceous to Eocene accreted plateau and seamount blocks crop out. In western Panama, the oceanic assemblages range from Upper Cretaceous to Miocene, and their geochemical signature show their oceanic plateau association. The Costa Rica and western Panama oceanic assemblages correspond to a fragmentary and disrupted Jurassic to Miocene sequences with a very complicated geological and geotectonic history. Their presence could be interpreted as a result of accretionary processes rather than tectonic erosion; despite this last process is nowadays active in the Middle American Trench. The whole picture has not been completed yet, but apparently, most of the igneous rocks have a geochemical signature similar to the Galapagos mantle plume. The later has been acting in pulses, or otherwise the outcropping occurrences could be part of several plateaus somehow diachronically formed in the Pacific basin

    Volatile contents of primitive bubble-bearing melt inclusions from Klyuchevskoy volcano, Kamchatka: Comparison of volatile contents determined by mass-balance versus experimental homogenization

    Get PDF
    Primitive olivine-hosted melt inclusions provide information concerning the pre-eruptive volatile contents of silicate melts, but compositional changes associated with post-entrapment processes (PEP) sometimes complicate their interpretation. In particular, crystallization of the host phase along the wall of the melt inclusion and diffusion of H+ through the host promote CO2 and potentially S or other volatiles to exsolve from the melt into a separate fluid phase. Experimental rehomogenization and analysis of MI, or a combination of Raman spectroscopy, numerical modeling, and mass balance calculations are potentially effective methods to account for PEP and restore the original volatile contents of melt inclusions. In order to compare these different approaches, we studied melt inclusions from a suite of samples from Klyuchevskoy volcano (Kamchatka Arc) for which volatile compositions have been determined using experimental rehydration, Raman spectroscopy, and numerical modeling. The maximum CO2 contents of melt inclusions are in agreement (~3600-4000 ppm), regardless of the method used to correct for CO2 in the bubble, but significantly more uncertainty is observed using mass balance calculations. This uncertainty is largely due to the lack of precision associated with the petrographic method of determining bubble volumes and may also be related to the presence of daughter minerals at the glass-bubble interface

    Avaliação de genotipos de bananeira em Capitão Poço - Pará.

    Get PDF
    Este trabalho objetivou avaliar o comportamento de nove genotipos de bananeira no decorrer de dois ciclos de produção, nas condições de Capitão Poço - Pará

    Danos da broca do tronco (Cratosomus sp.) em gravioleiras (Annona muricata L.) no Amapá.

    Get PDF
    O objetivo desse trabalho foi relatar danos da broca do tronco da gravioleira em um plantio conduzido em área de cerrado do Amapá.bitstream/item/71599/1/AP-2000-danos-broca-tronco-gravioleiras.pd

    Post-Rift Magmatic Evolution of the Eastern North American “Passive-Aggressive” Margin

    Get PDF
    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new Ar/ Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended

    Introdução de cultivares/hibridos de bananeira no Amapá.

    Get PDF
    Objetivando oferecer alternativas para alavancar a bananicultura estadual, a Embrapa Amapá em parceria com a Secretaria de Agricultura, Pesca, Floresta e do Abastecimento do Amapá (SEAF), iniciaram um trabalho conjunto, que constou da introdução de 16 cultivares/hibridos, coletados na Embrapa Amazônia Oriental em Belém, PA.bitstream/item/65120/1/AP-1999-introducao-cultivares-bananeira.pd

    Reconciling mantle attenuation-temperature relationships from seismology, petrology, and laboratory measurements

    Get PDF
    Seismic attenuation measurements provide a powerful tool for sampling mantle properties. Laboratory experiments provide calibrations at seismic frequencies and mantle temperatures for dry melt-free rocks, but require ∼10²−10³ extrapolations in grain size to mantle conditions; also, the effects of water and melt are not well understood. At the same time, body wave attenuation measured from dense broadband arrays provides reliable estimates of shear wave attenuation (Q_S⁻¹), affording an opportunity for calibration. We reanalyze seismic data sets that sample arc and back-arc mantle in Central America, the Marianas, and the Lau Basin, confirming very high attenuation (Q_S ∼ 25–80) at 1 Hz and depths of 50–100 km. At each of these sites, independent petrological studies constrain the temperature and water content where basaltic magmas last equilibrated with the mantle, 1300–1450°C. The Q_S measurements correlate inversely with the petrologically inferred temperatures, as expected. However, dry attenuation models predict Q_S too high by a factor of 1.5–5. Modifying models to include effects of H₂O and rheology-dependent grain size shows that the effects of water-enhanced dissipation and water-enhanced grain growth nearly cancel, so H₂O effects are modest. Therefore, high H₂O in the arc source region cannot explain the low Q_S, nor in the back arc where lavas show modest water content. Most likely, the high attenuation reflects the presence of melt, and some models of melt effects come close to reproducing observations. Overall, body wave Q_S can be reconciled with petrologic and laboratory inferences of mantle conditions if melt has a strong influence beneath arcs and back arcs

    A comparative study of volatile contents of primitive arc bubble-bearing melt inclusions determined by Raman-spectroscopy and mass-balance versus experimental homogenization methods

    Get PDF
    Primitive olivine-hosted melt inclusions (MI) are a useful means to estimate the pre-eruptive volatile contents of a volcanic melts but post-entrapment processes complicate this approach. In particular, crystallization of the host phase along the wall of the MI and diffusion of H through the host cause CO and potentially S or other volatiles to exsolve from the melt to a separate fluid bubble
    corecore