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RESEARCH ARTICLE
10.1002/2016GC006646

Post-rift magmatic evolution of the eastern North American
‘‘passive-aggressive’’ margin
Sarah E. Mazza1 , Esteban Gazel1 , Elizabeth A. Johnson2 , Michael Bizimis3 ,
Ryan McAleer4 , and C. Berk Biryol5

1Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA, 2Department of Geology and Environmental
Science, James Madison University, Harrisonburg, Virginia, USA, 3Department of Earth and Ocean Sciences, University of
South Carolina, Columbia, South Carolina, USA, 4United States Geological Survey, Reston, South Carolina, USA,
5Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Abstract Understanding the evolution of passive margins requires knowledge of temporal and chemical
constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution.
The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred
in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced
two postrift magmatic pulses at �152 Ma and 47 Ma, and thus provides a unique opportunity to study the
long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical
data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic
isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites
to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the fel-
sic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-
Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source
that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is
the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant
from the long-term evolution of this margin, resulting in a ‘‘passive-aggressive’’ margin that records multiple
magmatic events long after rifting ended.

1. Introduction

The Eastern North American Margin (ENAM) has been interpreted as a passive margin that developed after
the rifting of Pangea and the subsequent opening of the Atlantic Ocean basin approximately 200 Mya [e.g.,
Faill, 1998; Bradley, 2008]. However, the ENAM has experienced tectonic rejuvenation post-rifting evident by
topographic rejuvenation, ongoing seismic activity, and pulses of magmatic activity. Topographic rejuvena-
tion is marked by increased erosion rates and unsteady sediment deposition [Pazzaglia and Brandon, 1996;
McKeon et al., 2014], and drainage reorganization [Miller et al., 2013; Prince and Spotila, 2013] which have
been linked to mantle-driven dynamic topography [Rowley et al., 2013]. The 2011 Mineral, Virginia earth-
quake (M5.8) [Horton et al., 2015] in the Central Virginia Seismic Zone and the 1886 Charleston, South Caroli-
na earthquake (M6.9) [Bakun and Hopper, 2004] in the Charleston Seismic Zone are just two examples of
strong earthquakes in the recent seismic record in the ENAM. Postrift magmatism from the late Jurassic
(152 Ma) [Johnson et al., 1971] to Eocene (47 Ma) [Johnson et al., 1971; Southworth et al., 1993; Mazza et al.,
2014] is preserved from Virginia to Quebec [Eby, 1984, 1985; Foland et al., 1986]. These indicators of tectonic
rejuvenation highlight the not-so-passive nature of the ENAM and suggest that passive margins are not as
geologically stable as conventionally thought.

Incipient rift systems like the Red Sea-Gulf of Aden-East Africa rift system are useful for understanding the
early development of passive margins [Sahota et al., 1995; Izzeldin, 1987; Pallister et al., 2010; Korostelev
et al., 2016; Ebinger et al., 2010]. Yet, in order to understand the full evolution of passive margins, we need
to include areas that have been evolving for 10’s of millions of years, such as ENAM. The ENAM is an ideal
region to study the evolution of passive margins, and geochemical analysis of multiple magmatic events
scattered throughout the ENAM can help to improve our knowledge of the processes that affect postrift
margins.
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Here, we present a comprehensive set of new geochemical and geochronological data for the Late Jurassic
and Eocene volcanics from the northern Valley and Ridge of Virginia and West Virginia, which includes new
40Ar/39Ar ages for the Late Jurassic magmatic pulse along with a complete whole-rock major and trace-
element analysis of these alkaline volcanics, and the first Sr-Nd-Pb radiogenic isotopic data for these rocks.
The Eocene samples included here are in addition to previously published samples [Mazza et al., 2014], with
additional 40Ar/39Ar ages that confirm Eocene magmatic activity, and the first discussion of the production
of cogenetic felsic magmas. This comprehensive data set will help understand Late Jurassic and Eocene
magmatism and improve our understanding of processes associated with the post-rift magmatic activity in
so-called passive margins.

2. Geological Background

The ENAM experienced multiple orogenic events, locally known as Grenville (�1.2–0.9 Ga), Taconic (�470–
440 Ma), Acadian (�420–360 Ma), and Alleghanian (�320–260 Ma) and supercontinent breakup with Rodi-
nia at �570 Ma, and Pangea at �200 Ma [Tollo et al., 2004; Hatcher, 2002, 2010]. Starting in the Mesozoic,
the ENAM has also experienced multiple magmatic events, not all clearly associated with tectonic events.
The rifting of Pangea at �200 Ma is related to the widespread magmatism of the Central Atlantic Magmatic
Province (CAMP) [Nomade et al., 2007; Marzoli et al., 2011; Blackburn et al., 2013; Callegaro et al., 2013;
Whalen et al., 2015]. CAMP is preserved throughout the ENAM [Whalen et al., 2015] and is located near Late
Jurassic and Eocene volcanics of northwest Virginia-West Virginia (Figure 1) [Johnson et al., 1971; De Boer
et al, 1988; Mazza et al., 2014]. CAMP has been associated with a possible super plume [e.g., Wilson, 1997],
but Whalen et al. [2015] proposed that the breakup of Pangea, and the formation of CAMP, is related to a
massive detachment of the low angle subducting Rheic plate which existed between the modified Lauren-
tian margin (North America) and Gondwana prior to the Alleghenian orogeny. They found that the source
of CAMP was significantly modified by subduction processes and melted at temperatures below what is
expected from mantle plume activity.

Pangea rifting and CAMP magmatism initiated the ENAM’s development into a passive margin [Puffer, 2001,
2003; Whalen et al., 2015], but the subsequent pulses of volcanic activity, plus recent mantle-influenced,
dynamic topographic increase [e.g., Rowley et al., 2013]. This suggests that the passive margin is in fact a
dynamically active margin, meaning that even though traditional tectonic forces no longer have an effect
on the margin, it is still changing due to the dynamics of the lithosphere and the mantle. Two magmatic
events are recorded in the northern Valley and Ridge of Virginia-West Virginia: a Late Jurassic pulse that
erupted approximately 50 My after the initiation of rifting, followed by an Eocene pulse approximately 100
My later [Johnson et al., 1971; Mazza et al., 2014].

Postrifting magmatism is not limited to Virginia-West Virginia. The ENAM experienced other Jurassic to Cre-
taceous magmatic events such as those recorded at the Monteregian Hills alkaline province in Quebec [Eby,
1984, 1985; Foland et al., 1986; Roulleau et al., 2013], the White Mountain Magma Series in New England,
and the New England seamounts, all of which have been connected to the proposed Great Meteor hotspot
(Figure 1) [Crough, 1981; Duncan, 1984; McHone and Butler, 1984; Jansa and Pe-Piper, 1988; Klitgord et al.,
1988; McHone, 1996]. Late Jurassic-Early Cretaceous kimberlitic magmatism in New York and Pennsylvania
have been associated with the Great Meteor Hotspot [Heaman and Kjarsgaard, 2000; Bikerman et al., 1997].

A series of Late Jurassic alkaline volcanics are found in the Valley and Ridge province of northern Virginia-
West Virginia, alongside CAMP and Eocene volcanics [Johnson et al., 1971; Southworth et al., 1993]. K-Ar dat-
ing of a nepheline syenite from Augusta County, Virginia first constrained these alkaline units to the Late
Jurassic (145 6 7 Ma and 153 6 8 Ma for biotite and amphibole, respectively) [Zartman et al., 1967]. Johnson
et al. [1971] gave the first detailed petrology for the Augusta County alkaline suite, and a recent study by
Meyer and van Wijk [2015] presented detailed geochemistry for these Late Jurassic alkaline lavas, but limits
Late Jurassic magmatism to a �1000 km2 elliptical area in Augusta County. Southworth et al. [1993] had
Late Jurassic magmatism encompass a larger region that included Pendleton County, West Virginia, with a
40Ar/39Ar date of 147.0 6 0.7 Ma from a mica pyroxenite. Meyer and van Wijk [2015] proposed that Late
Jurassic volcanism were produced by lithospheric delamination that resulted with the delaminated material
interacting with the surrounding mantle lithosphere to trigger melting.
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The youngest magmatic event in the ENAM is the Eocene (47.9 6 0.2 to 47.0 6 0.2 Ma) [Mazza et al., 2014]
suite of volcanics found in the Valley and Ridge province of northern Virginia-West Virginia (Figure 1)
[Southworth et al., 1993]. The Eocene volcanics occur as dikes, sills, plugs, and diatremes up to �400 m in
diameter in at least 150 documented locations [Southworth et al., 1993; Tso et al., 2004; Tso and Surber,
2006]. Several hypotheses have attempted to explain the Eocene volcanism: (1) a regional basement frac-
ture zone along the 38th parallel linking volcanism in Kansas to Virginia [Zartman et al., 1967; Fullagar and
Bottino, 1969; Dennison and Johnson, 1971], (2) a still cooling magma chamber which also can account for
regional uplift and local warm springs [Dennison and Johnson, 1971], (3) a shift in midplate stresses due to
plate reorganization [Vogt, 1991] (4) a hidden hotspot [Chu et al., 2013], and (5) delamination of an eclo-
gized lower lithosphere or fossilized slab [Mazza et al., 2014]. Lithospheric delamination remains the favored
model for the production of the Eocene magmatic event, which can also explain the recent dynamic

Figure 1. Simplified geological map (modified from Dicken et al. [2005]) showing sample locations of the Late Jurassic and Eocene volcanic
rocks, with closed symbols representing samples of mafic (SiO2< 50 wt %) composition and open symbols representing samples of felsic
(SiO2> 50 wt %) composition. The Late Jurassic dikes trend to the NW while the Eocene dikes trend to the NE. One NW trending dike in
field area has been identified as belonging to the Central Atlantic Magmatic Province, shown in red and labeled on map [Mazza et al.,
2014]. GPS coordinates are provided in supporting information Table S1. Inset map shows other alkaline/kimberlitic volcanics found in the
ENAM, MtH – Mount Horeb Kimberlite, Virginia, KY – Elliot County Kimberlite, Kentucky, PA – Masonville Kimberlite, Pennsylvania,
NY – New York Kimberlites, New York, WMMS — White Mountain Magma Series, New Hampshire, MH – Monteregian Hills, Quebec, and
the proposed trace of the Great Meteor Hot Spot (GMHS) with associated New England Seamounts. The Appalachian mountains
(abbreviated Mtns) are shown in dark grey outline. Line X-X’ corresponds to tomography of Biryol et al. [2016] in Figure 10.
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topographic uplift experienced in Virginia [Pazzaglia and Gardner, 1994; Miller et al., 2013; Rowley et al.,
2013], that left a mantle scar, evident from slow-velocity anomalies under the Virginia-West Virginia Eocene
volcanics [Chu et al., 2013; Schmandt and Lin, 2014; Biryol et al., 2016].

3. Materials and Methods

We collected and analyzed 29 new samples from Virginia and West Virginia that expand on previously pub-
lished data [Mazza et al., 2014]. We collected additional mafic and felsic volcanics assumed to belong to the
Eocene magmatic pulse, and new mafic and felsic volcanics assumed to belong to the Late Jurassic mag-
matic pulse. Latitude/longitude locations are reported in supporting information Table S1.

40Ar/39Ar ages were determined at the New Mexico Geochronology Research Laboratory and at the U.S.
Geological Survey (USGS) in Reston, Virginia. One biotite separate and two matrix concentrates were pre-
pared for rocks expected to be Eocene in age. These samples were analyzed by the furnace-step heating
method at the New Mexico Geochronology Research Laboratory on a Mass Analyzer Products Limited
(MAP) 215-50 noble gas mass spectrometer following the standard procedure of this lab [e.g., McDowell and
Harrison, 1999]. Biotite and amphibole separates were prepared for dikes presumably of Jurassic age. Ali-
quots of these mineral separates were irradiated in two packages (KD55 & KD57) in the central thimble facil-
ity at the TRIGA reactor (GSTR) at the USGS in Denver, Colorado. The monitor mineral used in both
packages was FCT-3 sanidine with an age of 27.79 Ma [Kunk et al., 1985; Cebula et al., 1986] relative to
MMhb-1 at 519.4 6 2.5 Ma [Alexander et al., 1978; Dalrymple et al., 1981]. Following irradiation the samples
were analyzed by the furnace-step heating methods on a MAP 216 mass spectrometer at the USGS in Res-
ton, Virginia. Data reduction was completed following the techniques outlined in Kunk and McAleer [2011],
Haugerud and Kunk [1988], and Deino [2001].

Alteration-free rock chips of sample matrices were selected under a stereoscope microscope, powdered in
an alumina mill, and fluxed into homogeneous glass disks with ultrapure 34.83% Li2B4O7 – 64.67% LiBO2 –
0.5% LiBr flux from SpexVR (certified �1 ppm blank for all trace elements) in the Petrology Lab at Virginia
Tech for EDS-XRF and Laser Ablation ICPMS analyses, following the protocols in Mazza et al. [2014]. Major
element geochemistry was collected on a Panalytical EDS-XRF with a silicon detector at the Department of
Geosciences at Virginia Tech. The accuracy for USGS standard BHVO-2 (run as an unknown) was better than
1% for most major elements but Na2O and P2O5 was only better than 8% within reported values. The aver-
age relative standard deviation for 10 replicates of BHVO-2 were <1% for all major elements except Na2O
and P2O5 which were <3%. Trace elements from fluxed glasses were collected with an Agilent 7500ce
ICPMS coupled with a Geolas laser ablation system following the procedures detailed in Kelley et al. [2003]
and Gazel et al. [2012], with a He flow rate �1 L/m–5 Hz and an energy density per sample of � 7–10 J/cm2.
LA-ICP-MS data were calibrated with fluxed glasses of USGS standards BHVO-2, BCR-2, BIR-1, and STM-1
using Ti from XRF as an internal standard. High precision trace element standard values are from He et al.
[2015], Willbold and Jochum [2005], and Kelley et al. [2003] (standard values used reported in supporting
information Table S1). The average relative accuracy for 10 replicates of BHVO-2 (run as an unknown) was
better than 5% for most trace elements except Sc, Cr, Rb, Y, Zr, Nb, Sn, Ta, Pb, Th, and U (better than 15%).
The average precision for BHVO-2 was better 4% for all elements with the exception of Sc, Zn, Sn, and Tm
(<13%,) (complete statistical analysis reported in supporting information Table S1).

Radiogenic isotope ratios were determined at the Center for Elemental Mass Spectrometry (CEMS), Universi-
ty of South Carolina (USC) following established procedure for this laboratory [Bizimis et al., 2013; Khanna
et al., 2014]. Isotopic ratios for Pb, Nd, and Sr were obtained on a Neptune multi collector ICPMS at USC. Pb
isotope ratios were determined by Tl-addition [White et al., 2000]. Standard NBS-981 was determined at
206Pb/204Pb 5 16.933 6 0.001, 207Pb/204Pb 5 15.486 6 0.001, 208Pb/204Pb 5 36.682 6 0.004 (2r, n510). Isoto-
pic ratios for Nd were normalized to 146Nd/144Nd 5 0.7219 and the Nd standard JNdi was measured at
143Nd/144Nd 5 0.512094 6 0.000009 (2r, n 5 8). All Nd measurements are reported relative to JNdi
143Nd/144Nd 5 0.512115. Isotopic ratios for Sr were normalized to 86Sr/88Sr 5 0.1194 and replicate analyses
of standard NBS-987 yielded 87Sr/86Sr 5 0.710316 6 0.000013 (2r, n 5 7). All Sr measurements are reported
relative to NBS-987 87Sr/86Sr 5 0.710250. USGS standards BCR-2 and BHVO-1 were run as unknowns and are
presented in supporting information Table S2. Full procedural blanks ran at Pb< 38pg, Sr< 80pg, and
Nd< 10 pg (supporting information Table S2).
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4. Results

4.1. New Geochronological
Constraints
40Ar/39Ar ages from Augusta County,
Virginia, confirm a Late Jurassic mag-
matic event �50 Ma after the rifting of
Pangea. High precision 40Ar/39Ar bio-
tite and amphibole plateau ages from
sample 39 (Figure 1) are 152.7 6 0.4
Ma and 153.3 6 0.4 Ma, respectively
(supporting information Figures S1a
and S1b). These mineral separates
yield integrated ages of 152.5 6 0.5
Ma, and 152.2 6 0.4 Ma, respectively.
Biotite and amphibole were also dat-
ed from sample 35 and yielded
slightly disturbed age spectra (sup-
porting information Figures S2a and
S2b). However, these samples yield
preferred ages of 153.4 6 1.0 Ma

and 152.9 6 0.7 Ma, and suggest alkali magmatism occurred over a short period of time (<1 Ma) at
152–153 Ma.

40Ar/39Ar analyses for the Eocene magmatic event include biotite dated from sample 22b which yields an
age of 48.79 6 0.07 Ma (supporting information Figure S3) and is the location as 22a, which yields an age of
47.0 6 0.2 Ma (amphibole) [Mazza et al., 2014]. Matrix from sample 6 (basalt) yields an age of 48.6 6 1.0 Ma
(supporting information Figure S4). Matrix from sample 2 (basalt) was also dated and yields slightly dis-
turbed age spectra (supporting information Figure S5) but the preferred ages of 48.78 6 0.89 Ma and
47.39 6 0.60 Ma are consistent with the other reported ages for the Eocene event [Mazza et al., 2014].

4.2. Geochemistry of the Late Jurassic Magmatism
There are two populations of samples, relatively low silica (SiO2 44–47 wt %) and high silica (SiO2 56–58 wt %).
The low silica samples (Figure 2) have varying textures from porphyritic to aphanitic. Porphyritic samples
are characterized by fine-grained matrix with phenocrysts of pyroxene 1 nepheline 6 olivine 6

amphibole 6 biotite 6 apatite. Amphibole and pyroxene phenocrysts are zoned with smooth, rounded
edges, but show no other signs of reabsorption (supporting information Figures S6a and S6b). Some
pyroxenes have altered cores, and can be as large as 4 mm. Crustal xenoliths are common in the low silica
samples. Like the Late Jurassic mafic suite, the high silica samples range from aphanitic with no phenoc-
rysts to having abundant amphibole (0.7–2.5 mm) 1 biotite (<0.6 mm) 1 nepheline 6 K-feldspar phenoc-
rysts (<7 mm) (supporting information Figure S6c). Amphibole phenocrysts in the high silica samples are
defined by sharp crystal edges and range from (supporting information Figure S6d). In some cases,
K-feldspar phenocrysts exhibit tartan plaid twinning. Nepheline and feldspars in the groundmass general-
ly form blades that are elongate to paleoflow direction. For more detailed petrographic descriptions for
these samples, see Johnson et al. [1971].

Primitive mantle normalized spider diagrams show enrichments in Ba, but some show depletions in other
fluid-mobile elements (Rb, K, and U) and a negative slope in the heavy rare earth elements (HREE) (Figure
3a). The Jurassic mafic samples are more enriched in high field strength elements (e.g., Nb 128–164 ppm,
Ta 6–7ppm, Zr 168–297ppm) than average ocean island basalt (OIB) and plot in the upper end of the OIB
field in the mantle array (Figure 4a) [Pearce, 2008]. Ce/Pb values straddle the canonical OIB values (�25),
while Nb/U show greater variability, ranging from average OIB-concentrations to more enriched values
(Figure 4b) [Hofmann et al., 1986]. These volcanics are also characterized by enrichments in Gd/Yb and La/
Yb (Figure 4c).

The Late Jurassic felsic samples are predominantly classified as phonolites, with one tephriphonolite
(Figure 2). These phonolites are extremely enriched in high field strength elements (e.g., Nb 239–710 ppm,

Figure 2. Total alkalis (Na2O 1 K2O) versus SiO2 for the Virginia-West Virginia Late
Jurassic and Eocene volcanic pulses showing bimodal populations. Also plotted
are Late Jurassic volcanics from Meyer and van Wijk [2015] and Eocene volcanics
from Southworth et al. [1993] and Tso and Surber [2006]. Closed symbols repre-
senting samples of mafic (SiO2< 50 wt %) composition and open symbols repre-
senting samples of felsic (SiO2> 50 wt %) composition.

Geochemistry, Geophysics, Geosystems 10.1002/2016GC006646
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Ta 11–41 ppm, Zr 444–1190 ppm)
compared to the average nonsubduc-
tion influenced phonolites. The general
primitive normalized pattern for the
Virginia-West Virginia phonolites shows
depletions in Ba, Sr, P, and Ti, an enrich-
ment in Pb, and a flat/slight positive
slope in HREE (Figure 3b).

Sr-Nd-Pb isotopic analyses from one
trachybasalt and four phonolites are
plotted in Figure 5 (supporting
information Table S2). The range of
radiogenic isotopic ratios for the
Late Jurassic event, age corrected to
150 Ma, are (87Sr/86Sr)i 0.704170–
0.711616, (143Nd/144Nd)i 0.512459–
0.512546, (206Pb/204Pb)i 18.630–22.646,
(207Pb/204Pb)i 15.562–15.792, and
(208Pb/204Pb)i 38.21640.141.

It is important to note that sample 32,
previously used in Mazza et al. [2014],
has been regrouped from the Eocene
suite to the Jurassic suite, based on
geographic location, trace element
enrichments, and 144Nd/143Nd radio-
genic isotopes.

4.3. Geochemistry of the Eocene
Magmatism
The Eocene mafic samples range
from picrobasalt to basalt (41–48 wt
% SiO2, Figure 2, supporting infor-
mation Table S1). The mafic samples
are generally porphyritic with fresh
olivine (0.2–1 mm) 1 clinopyroxene
(<7 mm) 1 spinel (< 0.1 mm) phe-

nocrysts (supporting information Figure S7a). Some samples also contain mantle clinopyroxene and oliv-
ine xenocrysts and plagioclase microphenocrysts [Sacco et al., 2011]. The mafic units are generally better
preserved in the field, found as dikes, sills, and volcanic plugs. The felsic samples are aphanitic to porphy-
ritic with fresh biotite (<2 mm) 6 amphibole (<0.5 mm) and somewhat altered plagioclase and alkali feld-
spar phenocrysts (supporting information Figures S7b and S7c). Amphibole and biotite generally have
well-defined crystal edges.

Trace elements normalized to primitive mantle show a typical intraplate signature (Figure 3c) that includes
a steep slope in the HREE, with enrichments in Gd/Yb and La/Yb (supporting information Table S1, Figures
3c and 4c). Positive enrichments are found in high field strength elements (e.g., Nb 27–107 ppm, Ta 1–6
ppm, Zr 98–252 ppm) and depletions are found in fluid mobile elements (e.g., K and Pb). These mafic vol-
canics also fall within the OIB region of the mantle array (Figure 4a) [Pearce, 2008] and are close to canonical
OIB Ce/Pb and Nb/U values (Figure 4b) [Hofmann et al., 1986].

The felsic samples range in composition from trachyandesite to rhyolite (SiO2 56–69 wt %, Figure 2). Like
the mafic samples, high field strength elements are enriched (Figure 3d), but the HREE show a flat slope as
also noted in samples from the Jurassic event. Dy/Yb ratios are also lower than the mafic volcanics, which is
attributed to amphibole differentiation [Davidson et al., 2007].

Figure 3. Primitive mantle [from McDonough and Sun, 1995] normalized spider
diagrams for (a) Eocene and Late Jurassic volcanics of mafic composition
(SiO2< 50 wt %) with average OIB calculated from the GEOROC database, and (b)
Eocene and Late Jurassic volcanics of felsic composition (SiO2> 50 wt %) with
average global nonsubduction-influenced phonolites calculated from the
GEOROC database.
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5. Discussion

5.1. Petrological Modeling to Evaluate Magma Evolution
The composition of the most primitive mafic volcanics is useful for understanding where the magmas equil-
ibrated in the mantle, but to better understand mafic to felsic magma evolution we conducted geochemical
modeling using rhyoliteMELTS [Gualda et al., 2012]. Calculations were completed for crystal fractionation
beginning from the liquidus and then cooling at 58C temperature intervals at constant pressure.

Ideally, the most primitive mafic composition should be the starting composition for fractional crystalliza-
tion. However, the most primitive composition for the Late Jurassic volcanics failed to produce fractional
crystallization models that reproduced the data, and thus we conducted our models with a range of starting
compositions. The average composition of the mafic Late Jurassic volcanics produced melting models that
best correspond to the compositions of the phonolites. For the Late Jurassic event, a variety of starting pres-
sures, water contents, and oxygen fugacities (fO2, buffered with fayalite-magnetite-quartz, FMQ) were used
in the models, with 10 kbar/35 km and 1 wt % H2O producing the fractional crystallization paths that

Figure 4. (a) Mantle array diagram from Pearce [2008] showing the regions for NMORB (Normal Mid Ocean Ridge Basalt), EMORB (Enriched
Mid Ocean Ridge Basalt), OIB (Ocean Island Basalt), and subduction influence. (b) Ce/Pb versus Nb/U to show conical continental crust (CC)
and OIB concentrations [Hofmann et al., 1986]. (c) La/Yb versus Gd/Yb to show correlation of increasing Gd/Yb and increasing garnet in res-
idue. (d) Dy/Yb versus SiO2 to show amphibole fractionation [Davidson et al., 2007] (e) Zr/Sm versus Hf/Sm modified from Dupuy et al.
[1992] to show trends to carbonatite metasomatism. (f) La/Yb versus Nb/Yb shows differences in ENAM rifting and passive margin vol-
canics. The East African Rift volcanics (EAR) are shown in a field, whereas southeast Brazil, Central Atlantic Magmatic Province (CAMP), NY
Kimberlities, and Monteregian Hills are shown individually.
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correspond with our data (Figure 6).
While the water contents remain
unknown for the Late Jurassic event, 1
wt % water is a reasonable estimate
given the presence of hydrous phases
such as amphibole and biotite, and the
ability of phonolitic melts to contain
0.7–4.9 wt % water [Carroll and Blank,
1997; Di Muro et al., 2006]. Using an
fO2 FMQ buffer, we produce models
for fractional crystallization that best
reproduce the evolution from basanite
to phonolite (Figure 6a). As the biotite
and K-feldspar were successfully crys-
tallized in our models, but it failed to
crystallize amphibole, which is a com-
mon limitation of rhyoliteMELTS
[Gualda et al., 2012]. Besides failing to
crystalize amphibole, nepheline did
not crystallize in these models which
potentially is viable with the increase
in Al2O3 that the phonolites exhibit
but the models do not reproduce (Fig-
ure 6b). The other possibility to explain
this difference in Al2O3 between the
models and observed compositions is
magmatic recharge. However, we do
not see textural indicators of reabsorp-
tion in the samples.

For the Eocene event, we modeled a
variety of starting compositions, pres-
sures, water contents, and fO2 values.
The most primitive Eocene mafic sam-
ple (10) yielded models at 2 kbar/7 km
and 1 wt % H2O that best reproduced
the data trends. Models with 1 wt %
H2O are within the range of magmatic
H2O calculated for the Eocene magmas
[Sacco et al., 2011; Soles et al., 2014].
FMQ best reproduced the majority of
the fractionation trends of the felsic
samples (Figure 6), especially MgO and
FeO* (Figure 6d). However, in order to
reproduce the alkali content of the tra-
chydacites/rhyolites, the buffer FMQ
13 was necessary. This could be a limi-
tation of the model because of its

inability to produce thermodynamically complex phases, such as amphibole. Amphibole fractionation could
explain the flat trend in Al2O3 versus MgO space that the rhyoliteMELTS fails to reprodue (Figure 6b).

5.2. Assessment of Crustal Interaction
Crustal contamination has the potential to affect the trace element and isotopic compositions of the Late
Jurassic and Eocene volcanics. Mazza et al. [2014] showed that the Eocene mafic volcanics were not affected
by crustal contamination by conducting assimilation-fractional crystallization (AFC) model calculations

Figure 5. Radiogenic isotope results for ENAM volcanics with the first reported
Pb-Sr-Nd systematics for the Virginia Late Jurassic volcanics. ENAM volcanics are
compared with East African Rift (EAR) phonolites, continental phonolites, oceanic
phonolites, carbonatites, and kimberlites (data obtain from the GEOROC database;
georoc.mpch-mainz.gqdq.de/georoc/). Virginia samples were age corrected to
150 Ma (late Jurassic) and 50 Ma (Eocene). DMM – depleted MORB mantle, EMI –
enriched mantle I, EMII – enriched mantle II, HIMU – high l, FOZO – Focus Zone
[Zindler and Hart, 1986; Stracke et al., 2005].
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[DePaolo, 1981]. To assess if any crustal material was assimilated during the evolution of the Late Jurassic
event, we conduct similar AFC modeling. For the mafic end-member, we used the most primitive sample
with isotopic data, 32, which has a modal composition of 10% olivine, 30% clinopyroxene, and 60% plagio-
clase. We used the most primitive sample because we are interested in how these magmas evolve to more
felsic compositions, and if the more felsic compositions share isotopic signatures with the regional base-
ment. Using the modal compositions and parameters for bulk trace-element partition coefficients for Sr, Nd,
and Pb [Rollinson, 1993; McKenzie and O’Nions, 1991], we calculated partition coefficients of 1.12 for Sr, 0.10
for Nd, and 0.22 for Pb. Trace element compositions for the Late Jurassic volcanics and the basement mate-
rial used in the AFC models are similar (supporting information Table S3). A limited data set of isotopic com-
positions for local Blue Ridge crustal basement consisting of gneisses, diorite-granites, and charnokites was
used for the assimilant composition [Pettingill et al., 1984; Sinha et al., 1996]. We modeled AFC for the
extreme isotopic end-members (RM1, lowest 87Sr/86Sr; S-3-81, highest 87Sr/86Sr; JP-92-36, most enriched Pb)
and for the average composition of local Blue Ridge basement, from the Pedlar and Lovingston Massifs
approximately 50 km to the southeast of the Late Jurassic volcanics, and the average regional Blue Ridge
basement from Georgia, South Carolina, North Carolina, and Virginia [Sinha et al., 1996; Samson et al., 1995;
Carrigan et al., 2003].

The regional and local Blue Ridge basement is dominated by unradiogenic lead (206Pb/204Pb< 17.6 and
208Pb/204Pb< 37.5) such that AFC fails to explain the trend for the Late Jurassic enriched composition
(206Pb/204Pb< 22.646 and 208Pb/204Pb< 40.141) (Figures 7a and 7b). Even when considering the isotopic
end-members, AFC fails to explain the enriched Pb compositions of the Late Jurassic volcanics (Figures 7a
and 7b). Nd for the Late Jurassic volcanics is fairly consistent (average 143Nd/144Nd 5 0.51250) and generally
more radiogenic than the local basement (average 143Nd/144Nd 5 0.51221). While a few basement samples
are within the range of the Late Jurassic volcanics, AFC using the average basement composition cannot
account for the radiogenic 143Nd/144Nd measured in the Late Jurassic volcanics (Figure 7c). The Late Jurassic
volcanics share a similar range of 86Sr/87Sr as the Virginia basement material, and AFC modeling suggests
up to 30% assimilation of basement material can influence the Sr compositions of these volcanics. However,

Figure 6. Fractional crystallization models made with rhyoliteMELTS [Gualda et al., 2012], showing various fractional crystallization paths of
the melt for both the Virginia Eocene and Late Jurassic magmas. The starting compositions are indicated by black diamond/triangle, with
varying oxygen fugacity buffer conditions (fO2 FMQ) indicated by variation of line texture.
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when comparing Sr with the other isotopic systems, AFC cannot account for the trends of 87Sr/86Sr versus
206Pb/204Pb (e.g., Figure 7d), 87Sr/86Sr versus 207Pb/204Pb, 87Sr/86Sr versus 208Pb/204Pb, or 87Sr/86Sr versus
143Nd/144Nd.

The evolution from the most primitive mafic sample with isotopic data to the most evolved phonolite does
not seem to be controlled by interaction with the basement material, and in fact plots in the opposite direc-
tion from crustal interaction. However, we must be careful with these interpretations for three reasons,
(a) the availability of complete Sr-Nd-Pb radiogenic isotopes and trace element abundances for regional
crustal basement is limited, and (b) it is not certain that the lower crust beneath the Appalachians is the
same as the basement massifs [Pettingill et al., 1984; Sinha et al., 1996], (c) we cannot rule out AFC with car-
bonate crust, as this area of Virginia-West Virginia has abundant carbonates, but we cannot model AFC with
these regional carbonates due to the lack of complete trace element and radiogenic isotopic data [e.g.,
Samson, 1996 which lacks trace element concentrations].

5.3. Contrasting the Record of Late Jurassic and Eocene Events in Virginia-West Virginia
The Late Jurassic and Eocene magmatic events both range from mafic (basanite or picrobasalt) to felsic
(phonolite or rhyolite) compositions (Figure 2). The mafic rocks from both events share intraplate signatures
with enrichments in LILE and Nb/Yb and Th/Yb ratios. Heavy REE are good indicators of garnet in the resi-
due, as seen by both the steep slope of HREE (Figures 3a and 3c) and high Gd/Yb ratios (Figure 4c). There-
fore, both the Virginia-West Virginia Late Jurassic and Eocene mafic volcanics have HREE signatures
indicative of melt originating at depths with residual garnet (>2.5–3 GPa, e.g., Johnson [1998] and Salters
et al. [2002] for peridotite mantle and 1.8–5 GPa for pyroxenite mantle, e.g., Liu and Presnall [2000]; Tuff
et al. [2005]). The Late Jurassic mafic pulse has higher concentration of LREE than the Eocene pulse
(La/Yb> 83 versus 19, respectively), as well as high field strength elements (Nb/Yb> 73 versus 32, respec-
tively) suggesting that they resulted from lower degrees of partial melting or a more enriched source in
incompatible elements. Ce/Pb and Nb/U values are close to the canonical OIB value (Figure 4b) [Hofmann
et al., 1986], suggesting an asthenospheric source with limited interaction with the continental crust for

Figure 7. Assessment of crustal interaction. Blue Ridge basement from Pettingill et al. [1984], Samson et al. [1995], Sinha et al. [1996], and
Carrigan et al. [2003]. Basement end-members are RM1 [Carrigan et al., 2003], S-3-81 [Pettingill et al., 1984], and JP-92-36 (Pb only) [Sinha
et al., 1996]. All samples are age corrected to average eruptive age of Virginia Late Jurassic magmatism (150 Ma). Every circle-tick mark rep-
resents dF 5 0.05 with a maximum dF 5 1. F 5 mass of assimilated material over initial mass. The rate of assimilation to crystallization
(R 5 dMa/dfc) is 0.5.
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both events. The enrichments of Nb/U are greater for the Late Jurassic event, which could suggest small
melt fractions. Similarly, the Late Jurassic phonolites are also more enriched in LILE than the Eocene felsic
rocks, and are characterized by depletions in Ba, Sr, P, and Ti. Depletions in Ba, Sr, and Eu are indicative of
feldspar fractionation (Figure 3b) while lower P and Ti concentrations probably resulted from fractionation
of apatite and Ti-oxides, respectively. The felsic volcanics from the Eocene event do not share the Ba and Eu
depletions (Figure 3d). The rhyoliteMELTS models for the Late Jurassic volcanics produced K-feldspar during
late stage fractionation, which agrees with the presence of K-feldspar phenocrysts and the trace element
chemistry.

Radiogenic isotopic data show clear differences in the two pulses of magmatism in Virginia-West Virginia.
We age-corrected Sr-Nd-Pb isotopes of the Late Jurassic volcanics to 150 Ma (supporting information Table
S2, Figure 5). Additionally, the ENAM isotopic values are shown with global data for phonolites from conti-
nental intraplate, rift (East African Rift; EAR) and oceanic settings, kimberlites (Circum-Parana, Serbia, Cana-
da, Baltic Shield, and New York), carbonatites, New England Seamounts, and Monteregian Hills, in order to
elucidate processes that could have been responsible for volcanism. Radiogenic isotopes are indicators of
melts derived from various mantle reservoirs, which have been defined as depleted mid-ocean ridge basalt
mantle (DMM), enriched mantle I and II (EMI and EMII), and high l (l 5 238U/204Pb) mantle (HIMU) [Zindler
and Hart, 1986]. The Late Jurassic alkaline volcanics cover a larger range of (206Pb/204Pb)i versus
(207Pb/204Pb)i space than the Eocene pulse, with the phonolites extending toward radiogenic Pb-isotopes
with HIMU affinities. The extent of radiogenic (206Pb/204Pb)i ratios is well beyond the typical range of silicate
magmas. The only other locations with similar enrichments in 206Pb/204Pb are kimberlites from Circum-
Parana and carbonatites from the EAR. The high 206Pb/204Pb values from Circum-Parana have not been ade-
quately explained, but the overall isotopic signatures suggest lithospheric mantle interaction common to
kimberlites [Araujo et al., 2001]. Enrichments in 208Pb/204Pb can be interpreted as interaction with an
enriched mantle (EMII) component (Figure 5b). Kimberlites from the Baltic Shield and Serbia, and carbona-
tites and phonolites from the EAR have similar enrichments in 206Pb/204Pb and 208Pb/204Pb ratios. Overall,
the variable enrichments in 208Pb/204Pb relative to 206Pb/204Pb suggest that the ENAM Late Jurassic alkaline
volcanics contained EMII and HIMU components in their source, while the Eocene event suggests mixing
between a HIMU and DMM component [Mazza et al., 2014].

Late Jurassic alkaline volcanics in the ENAM have relatively uniform (143Nd/144Nd)i values, while (87Sr/86Sr)i

covers a wide range from relatively unradiogenic to radiogenic (Figure 5c). These compositions are very
similar to the New York kimberlites, which have been interpreted as derived from the asthenospheric man-
tle [Bailey and Lupulescu, 2015]. The enrichments in 87Sr/86Sr are potentially related to crustal interaction or
calcite alteration.

As previously discussed, AFC cannot adequately explain the trends of Sr-Nd-Pb systematics for the Late
Jurassic volcanics. Instead Sr-Nd-Pb systematics show an enrichment of radiogenic Pb with magma evolu-
tion, and 87Sr/86Sr-143Nd/144Nd compositions on par with volatile-rich lithologies, e.g., kimberlites and car-
bonatites. We interpret these trends as the melting of an EMII influenced mantle source similar to the
source of the New York kimberlites to the north, the interaction with an unsampled high 206Pb/204Pb source
potentially associated with metasomatism typical to kimberlite/carbonatite magmas.

5.4. Origin of Cogenetic Felsic Rocks Associated With the Postrift Mafic Pulses
A previous study interpreted these Late Jurassic volcanics as low and high silica adakites [Meyer and van
Wijk, 2015]. Adakites were defined by Defant and Drummond [1990] as subduction-related intermediate to
felsic rocks, though further evidence also suggests that not all adakites are subduction related since partial
melting of delaminated continental crust can also produce adakite compositions [Xu et al., 2002]. Adakites
usually crystallize plagioclase, hornblende, and biotite, and have low Y and Yb (<18 and 1.9 ppm, respec-
tively), high Mg# (molar[MgO/(MgO 1 FeO)]*100)) of �51, high (La/Yb)N> 10 [Martin, 1999], and high Sr/Y
[Defant and Drummond, 1990].

Some trace element signatures of Virginia-West Virginia Late Jurassic volcanics resemble adakites, as both
the high silica and low silica rocks have high (La/Yb)N (Figure 8a) and high Sr/Y (Figure 8b), well within the
range of global adakites. However, YbN and Y values are higher than the global adakite composition. In
addition, the Mg# (Figure 8c) of the high silica volcanics is <20, thus significantly lower than the expected
Mg# of adakites.
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We instead interpret these rocks as phonolites, which are more enriched in YbN versus (La/Yb)N (Figure 8a)
and Y versus Sr/Y (Figure 8b) than adakites. We restricted the geochemical data downloaded from GEOROC
to high precision geochemistry that included the full range of trace elements (in particular Nb and Ta), and
then subdivided the data to continental, rift (EAR), and oceanic phonolites. All three types of phonolites
have high (La/Yb)N and high Sr/Y, similar to what is expected for adakites. However, YbN and Y are signifi-
cantly more enriched in phonolites than in adakites. In general, the and high silica Late Jurassic volcanics
predominantly correspond to phonolites from the EAR and ocean islands. The Mg# of these rift and intra-
plate phonolites is also within the range of the high silica Late Jurassic volcanics. Nb and Ta are potentially
the most important elemental pair to help distinguish subduction versus nonsubduction magmas, due to
the depletions of Nb and Ta in subduction related magmas. Arc-related adakites have strong depletions in
Nb and Ta relative to other elements of similar compatibility [Maury et al., 1996]. Meyer and van Wijk [2015]
did not report any Nb or Ta data in their study, and thus could not use these elements to further help con-
strain their interpretation. As mentioned above, we found that Late Jurassic volcanics are highly enriched in
Nb and Ta (Figures 3a and 3b), which is strong evidence for our reinterpretation of these rocks as
nonsubduction-influenced phonolites. The alkali contents and mineral chemistry can also help determine
adakites verses phonolite compositions, with the major element compositions of adakites being more simi-
lar to andesite-dacites whereas phonolites are enriched in alkalis (Figure 8d) [Streckeisen, 1979] and the pre-
ferred fractionation of feldspars in adakites and feldspathoids in phonolites. The Late Jurassic volcanics are
enriched in Na2O and K2O and fractionated nepheline, both common features of phonolites.

Highly evolved alkaline lavas such as phonolites can be produced by several processes: fractional crystalliza-
tion [e.g., Panter et al., 1997], assimilation fractional crystallization (AFC) [e.g., Wiesmaier et al., 2012], and var-
iable degrees of partial melting [e.g., Pelleter et al., 2014]. Fractional crystallization is most frequently evoked
for producing phonolites in both rift and intraplate environments [e.g., Panter et al., 1997; Weaver, 1990; Le
Roex et al., 1990; Holm et al., 2005]. The EAR has phonolitic and carbonatitic magmas found within proximal
to each other, including Oldoinyo Lengai, the only active carbonatitic volcano [Bell and Simonetti, 1996].

Figure 8. Adakite discriminatory plots with global adakites, nonarc adakites, continental phonolites, East African Rift (EAR) phonolites, and
oceanic phonolites from GEOROC database. (a) Chondrite normalized La/Yb versus Yb [Martin, 1999]. (b) Sr/Y versus Y [Defant and Drum-
mond, 1990]. (c) SiO2 versus Mg# where Mg# 5 molar MgO/(MgO 1 FeO)*100. D) Total alkalis (Na2O 1 K2O) versus SiO2 verse with rock
types as 1: Picrobasalt, 2: Basalt, 3: Basaltic Andesite, 4: Andesite, 5: Dacite, 6: Basanite, 7: Trachybasalt, 8: Basaltic Trachyandesite, 9: Tra-
chyandesite, 10: Trachydacite, 11: Rhyolite, 12: Phonotephrite, 13: Tephriphonolite, 14: Phonolite, and 15: Melilitite.
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Phonolites in the EAR are characterized by depletions in Ba, P, Ti, and enrichments in Nb, Y, Hf, Th, and Ta
[Klaudius and Keller, 2006; Mana et al., 2012] and are suggested to have formed by crystal fractionation from
nephelinite. Phonolites from Marie Byrd Land, the continental rift in Antarctica, have also been explained by
fractional crystallization of a basanitic magma source [Panter et al., 1997; LeMasurier et al., 2011].

Crystal fractionation has also been the proposed mechanism for the evolution of basanitic to phonolitic
magmas in intraplate settings, such as seen in Trindade [Weaver, 1990; Siebel et al., 2000], Tristan da Cunha
[Le Roex et al., 1990], Kerguelen [Weis et al., 1993], and Cape Verde [Holm et al., 2005]. Like rift phonolites,
these evolved lavas have enrichments in Nb, Ta, Zr, and Hf and depletions in Ti. However, Tenerife in the
Canary Islands and Mayotte in the Comoros Islands are two intraplate settings with evolved phonolites that
cannot be adequately explained by fractional crystallization, where AFC and/or recycling of crustal material
has been proposed [Wiesmaier et al., 2012].

Based on our petrological modeling using rhyoliteMELTS (Figure 6), fractional crystallization from a basanitic
magma source could have produced the Late Jurassic phonolites. The evolved nature of these phonolites
makes constraining melting conditions difficult with traditional geothermobarometers. Nevertheless, one
mafic sample can be used to estimate temperatures of melt equilibration with the Lee et al. [2009] thermo-
barometer, as it is based on olivine-melt Fe-Mg exchange for temperature calculations, and Si activity in
melt in equilibrium with orthopyroxene 1 olivine for pressure calculations. Sample 31 was the only sample
to crystallize olivine (sample 31) yielding melt equilibration conditions of 13518C and 2.09 GPa/70 km. Frac-
tional crystallization models suggest that the phonolites equilibrated around 1 GPa, or approximately 35 km
depth. This places the final stages of fractional crystallization at the base of the crustal lithosphere, assum-
ing an average crustal thickness of 40 km. Trace element signatures for the Late Jurassic phonolites agree
with a shallow region of crystallization due to the flat/slight positive slope in HREE (Figure 3b) and a low Dy/
Yb ratio (Figure 4d), consistent with the presence of amphibole in cumulate phases [e.g., Davidson et al.,
2007].

Our models (Figure 6) show that the Eocene trachydacites and rhyolites are likely the result of crystal frac-
tionation at shallow pressures. Modeling crystallization conditions suggest that these magmas differentiat-
ed at 0.2 GPa/6 km. HREE signatures confirms a shallow crystallization depth, seen by a flat slope in HREE
(Figure 3d) that potentially obscured the original source-related signatures. Amphibole fractionation with
an overall higher SiO2 concentration also confirms crystallization at shallow depths (Figure 4d). This model-
ing exercise shows that the Eocene and Late Jurassic events fractionated at different depths, likely due to
the difference in source compositions. The common association of phonolites with carbonatites, and the
similarities of the Late Jurassic radiogenic isotopic data with volatile-rich lithologies, e.g., carbonatites and
kimberlites, suggests that carbonatite metasomatism could be responsible for composition of the Late
Jurassic volcanics.

5.5. Wide-Spread Alkaline Magmatic Pulses in the Late Jurassic Along the ENAM
New England and the adjacent Montr�eal region of Canada have also experienced multiple pulses of
magmatic activity since the breakup of Pangea recorded by the White Mountain Magma Series
(WMMS) from 200 to 90 Ma [Foland and Faul, 1977; Hubacher and Foland, 1991], the Monteregian Hills
volcanic province in Montr�eal at 124 Ma [Foland et al., 1986], and the New England Seamounts
(NESM) with a clear west-east age progression from 103 to 82 Ma [Duncan, 1984] (Figure 9). The mul-
tiple pulses of magmatism in New England have been linked to the movement of the Great Meteor
hotspot [e.g., Eby, 1985], however, all events except the NESM lack a clear age progression which
argues against a common source.

Even if the WMMS, Monteregian Hills, and the NESM are not all the products of the Great Meteor hotspot,
these volcanics and the Virginia-West Virginia volcanics can help elucidate processes involved with postrift
magmatism of the ENAM. Limited data exists for the postrift New England volcanics, but what is available
suggests an alkaline affinity. The Monteregian Hills range from alkali basalts to carbonatites (Oka carbona-
tite complex in the west) [Eby, 1985; Roulleau et al., 2013], and the NESM consist of alkali basalts to basanites
[Houghton et al., 1979]. The Virginia-West Virginia Eocene event shares REE signatures with the NESM. The
Late Jurassic event was more enriched in REE than the NESM and shares geochemical similarities with the
NY kimberlites (elevated Gd/Yb, La/Yb, and Nb/Yb) (Figure 4).
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The depletions of Zr and Hf relative to REE of similar compatibility in the upper mantle are often taken as
indicators of carbonate metasomatism [Dupuy et al., 1992; Rudnick et al., 1993]. Virginia-West Virginia
Eocene volcanics plot, on average, close to what is expected of OIBs, while Virginia-West Virginia Late Juras-
sic samples have increasingly larger Zr and Hf depletions relative to the REE (low Zr/Sm), pointing toward a
source that may have been metasomatized by carbonate-rich fluids (Figure 4e). The Late Jurassic volcanics
are also more enriched in Sr (average 1983 ppm) than the Eocene volcanics (average 830 ppm), which can
also be an indicator of carbonate metasomatism. The Monteregian Hills and NY kimberlites also have Zr
and Hf depletions relative to the REE, and enrichments in Sr, that all trend toward a carbonatite-
metasomatized source, consistent with the presence of carbonatites in the Monteregian Hills and the link
between kimberlites and carbonate metasomatism.

5.6. Implications for the Postrift Evolution of Passive Margins
Reactivation of a passive margin to a magmatically active margin would require processes that are associat-
ed with intraplate volcanism. Mantle plumes, thermochemical anomalies that originate deep within the
earth (i.e., the core-mantle boundary) [Morgan, 1971; Wilson, 1973; Hofmann and White, 1982], are one
mechanism that can account for postrift magmatism. However, the mantle plume model cannot explain all
nontectonic, intraplate magmatism [Anderson, 2000; Anderson and King, 2014]. Alternative processes in the
upper mantle, such as lithospheric delamination [Ducea and Saleeby, 1998; Lustrino, 2005] and shear-driven
upwelling [Conrad et al., 2011] can result in magmatic reactivation of passive margins without a deep man-
tle source. Lithospheric delamination results from gravitational instabilities in the lower lithosphere causing
denser material to pull away and thus allowing warmer, more buoyant asthenospheric material to upwell
and melt via decompression. Lithospheric instabilities in rift/postrift settings have been suggested to form
due to lateral variations of temperature and density formed during rifting processes [e.g., Sleep, 2007]. Such
instabilities could allow for local delamination along postrifted margins and associated magmatism [Meyer
and van Wijk, 2015]. Shear-driven upwelling occurs in the asthenosphere as a result of relative motion of
the mantle and a change in lithospheric thickness, such that the asthenosphere will upwell in the region of
a lithospheric pocket, or scar during a delamination event [Conrad et al., 2011]. Geodynamic modeling [Mey-
er and van Wijk, 2015] supports the idea that instabilities develop at the edges of rift zones, leading to
delamination and associated decompression melting. They showed that the outer margins of rift zones, up
to 600 km away from active rifting, could see a thinned mantle lithosphere (up to 25 km of lithospheric thin-
ning), while the upper crust remains unchanged. The extension rate and width of the rift zone do not
appear to affect the formation of these instabilities. The development of gravitational instabilities thus trig-
gered delamination and Meyer and van Wijk [2015] suggested that the delaminated material undergoes
metamorphism, interacting with the surrounding mantle.

Lithospheric delimitation could be an appropriate model for the production of the Late Jurassic volcanics,
as proposed by Meyer and van Wijk [2015]. While only one sample yielded a melt equilibration temperature,

Figure 9. Histogram showing magmatic events that have occurred on the ENAM. Ages come from Pe-Piper and Reynolds [2000] and Ross
[2010] (Coastal New England), Blackburn et al. [2013] (CAMP), Foland and Faul [1977] and Hubacher and Foland [1991] (White Mountain
Magma Series for K-Ar and Ar-Ar, respectively), Heaman and Kjarsgaard [2000] (NY Kimberlites), Foland et al. [1986] (Monteregian Hills), and
Duncan [1984] (New England Seamounts).
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13518C is too cold to invoke melting from a mantle plume [e.g., Lee et al., 2009]. Based on the depths of
melt equilibration for the mafic volcanics at 70 km and the felsic volcanics at 35 km, we suggest that delam-
ination triggered initial melting with upwelling asthenosphere that incorporated lithospheric mantle during
fractionation at shallower depths. Melting of other alkaline and volatile-rich volcanics from along the ENAM
between �153 and �125 Ma, e.g., New York kimberlites and Monteregian Hills alkaline-carbonatite com-
plex, are not the product of lithospheric delamination [e.g., Roulleau et al., 2013; Bailey and Lupulescu, 2015],
but nonetheless sample a similar, volatile-rich, heterogeneous upper mantle as the Late Jurassic volcanics
of Virginia-West Virginia.

Mazza et al. [2014] suggested that lithospheric delamination was the cause for the Eocene magmatic pulse
by coupling geochemical data with seismic evidence for varying thicknesses of the lithosphere from North
Carolina [Wagner et al., 2012] and Virginia [Benoit and Long, 2009]. Since then, data from the EarthScope
and USArray seismic network for the ENAM have confirmed that lithospheric delamination could be a plau-
sible mechanism for Eocene volcanism [Schmandt and Lin, 2014; Liu and Holt, 2015; Biryol et al., 2016; Porter
et al., 2016]. Schmandt and Lin [2014] reported a region of low seismic velocities termed the Central Appala-
chian anomalous zone, which includes our study area and the presence of a possible lithospheric scar. They
suggest that lithospheric delamination could result in the present-day anomaly. Schmandt and Lin [2014]
also discussed the possibility of the fluids from the Farallon slab affecting the rheology of the upper mantle
and thus the low-velocity anomaly. Biryol et al. [2016] expanded on these observations with additional data
from the Southeastern Suture of the Appalachian Margin Experimental array. They suggest that delamina-
tion has been occurring in a piecemeal fashion, which also accounts for the rejuvenated tectonism seen in
the ENAM. They suggest that a more recently removed piece of the lithosphere is visible as a fast velocity
anomaly within the warmer asthenosphere (see F5 in Figure 10). Porter et al. [2016] also agrees that delami-
nation is the most plausible mechanism to explain the observed low-velocity anomaly.

Tomographic cross sections in the region of the Virginia-West Virginia volcanics show a slow-velocity anom-
aly in the upper mantle (label S2 in Figure 10, tomography from Biryol et al. [2016]). The present-day low-
velocity anomaly corresponds to the depths of the Eocene melt equilibrium in Figure 10. Eocene mafic
melts equilibrated between 2.0 and 3.0 GPa, based on calculations using the Lee et al. [2009] geothermobar-
ometer and discussed in detail in Mazza et al. [2014]. It remains a possibility that partial melt still exists in
this slow-velocity region beneath Virginia, and further geophysical work on the region can help clarify this.
The possible ongoing presence of partial melts below Virginia could be due to a simultaneous change in
the lithosphere-upper mantle asthenosphere flow due to the timing of the Farallon slab arriving to the
ENAM [Ren et al., 2007] coupled with the presence of instabilities remnant of rifting. Shear-driven convec-
tion [Ballmer et al., 2015] cannot be excluded as a possibility for the presence of partial melt and more
recent topographic rejuvenation events of the central Appalachians [e.g., Pazzaglia and Gardner, 1994; Row-
ley et al., 2013].

6. Conclusions

We conclude that lithospheric instabilities that lead to piecemeal foundering and delamination are probably
the trigger that produced the volcanism and rejuvenation seen from Virginia to New England along the
ENAM. The complex inheritance of the formation of the Appalachians by multiple collisions resulted in a
‘‘passive-aggressive’’ margin that continued its evolution 200 My after the opening of the Atlantic. We char-
acterized two magmatic events in Virginia-West Virginia following the opening of the Atlantic Ocean basin,
with a pulse at �153 and at �47 Ma. The Late Jurassic pulse contains highly alkaline magmas, basanites,
and trachybasalts to phonolites, with the evolution of these magmas best explained by crystal fractionation
at the base of a thinned lithosphere. Sr-Nd-Pb radiogenic isotopes suggest a heterogeneous source, with
similar mantle reservoirs also sampled by kimberlites and carbonatites. The late Jurassic magmatic pulses
are temporally equivalent with �147 Ma kimberlites from NY and share isotopic similarities. This suggests
that Late Jurassic magmatism was widespread across the ENAM, sampling a uniform upper mantle and was
likely caused by tectonic instabilities inherited from rifting of Pangea [Thomas, 1977, 2006].

Timing of the Eocene magmatism has been better constrained to 48–47 Ma. The felsic magmas resulted
from crystal fractionation of basaltic magmas at shallow depths. Eocene magmas used preexisting shallow
crustal features as melt conduits [Johnson et al., 2013; Shada et al., 2014]. Lithospheric delamination, as
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proposed by Mazza et al. [2014] remains the best model for magma production, and has been recently sup-
ported by geophysical evidence [e.g., Schmandt and Lin, 2014; Biryol et al., 2016].

The ENAM records the evolution of continental rifting, from active supercontinent breakup to the develop-
ment of a magmatically active margin that retains thermal instabilities up to 50 My after rift initiation. Later
rejuvenation associated with the Eocene magmatic pulse and more recent dynamic topography is not con-
nected to the immediate postrift evolution of the margin, but is likely due to ongoing lithospheric
delamination.
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