646 research outputs found

    Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph revealed the presence of two massive companions to the solar-type star HD202206. Although the three-body fit of the system is unstable, it was shown that a 5:1 mean motion resonance exists close to the best fit, where the system is stable. We present here an extensive dynamical study of the HD202206 system aiming at constraining the inclinations of the two known companions, from which we derive possible ranges of value for the companion masses. We study the long term stability of the system in a small neighborhood of the best fit using Laskar's frequency map analysis. We also introduce a numerical method based on frequency analysis to determine the center of libration mode inside a mean motion resonance. We find that acceptable coplanar configurations are limited to inclinations to the line of sight between 30 and 90 degrees. This limits the masses of both companions to roughly twice the minimum. Non coplanar configurations are possible for a wide range of mutual inclinations from 0 to 90 degrees, although ΔΩ=0[π]\Delta\Omega = 0 [\pi] configurations seem to be favored. We also confirm the 5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we provide a very good stable solution in the resonance, whose χ2\chi^2 does not differ significantly from the best fit. Using our method to determine the center of libration, we further refine this solution to obtain an orbit with a very low amplitude of libration, as we expect dissipative effects to have dampened the libration.Comment: 14 pages, 18 figure

    Electromagnetic Form Factors in the hypercentral CQM

    Full text link
    We report on the recent results of the hypercentral Constituent Quark Model (hCQM). The model contains a spin independent three-quark interaction which is inspired by Lattice QCD calculations and reproduces the average energy values of the SU(6) multiplets. The splittings are obtained with a SU(6)-breaking interaction, which can include also an isospin dependent term. Concerning Constituent Quark models, we have shown for the first time that the decreasing of the ratio of the elastic form factors of the proton is due to relativistic effects using relativistic corrections to the e.m. current and boosts. Now the elastic nucleon form factors have been recalculated, using a relativistic version of the hCQM and a relativistic quark current showing a very detailed reproduction of all the four form factor existing data over the complete range of 0-4 GeV2GeV^2. Futhermore, the model has been used for predictions concerning the electromagnetic transverse and longitudinal transition form factors giving a good description of the medium Q2Q^2 behaviour. We show that the discrepancies in the reproduction of the helicity amplitudes at low Q2Q^2 are due to pion loops. We have calculated the helicity amplitudes for all the 3 and 4 star resonances opening the possibility of application to the evaluation of cross sections.Comment: 5 pages, 7 figures, Invited talk at the ICTP 4th International Conference on Perspectives in Hadronic Physics, Trieste, Italy, 12-16 May 2003. Accepted by Eur. Phys. J.

    Analytical methods in wineries: is it time to change?

    Get PDF
    A review of the methods for the most common parameters determined in wine—namely, ethanol, sulfur dioxide, reducing sugars, polyphenols, organic acids, total and volatile acidity, iron, soluble solids, pH, and color—reported in the last 10 years is presented here. The definition of the given parameter, official and usual methods in wineries appear at the beginning of each section, followed by the methods reported in the last decade divided into discontinuous and continuous methods, the latter also are grouped in nonchromatographic and chromatographic methods because of the typical characteristics of each subgroup. A critical comparison between continuous and discontinuous methods for the given parameter ends each section. Tables summarizing the features of the methods and a conclusions section may help users to select the most appropriate method and also to know the state-of-the-art of analytical methods in this area

    Vinegar production from fruit concentrates: effect on volatile composition and antioxidant activity

    Get PDF
    Vinegar stands as a highly appreciated fermented food product due to several functional properties and multiple applications. This work focuses on vinegar production from fruit wines derived from fruit concentrates, to attain a food product with nutritional added value. Four fruit vinegars (orange, mango, cherry and banana), were produced and characterized, with total acidities of 5.3 ± 0.3% for orange, 5.6 ± 0.2% for mango, 4.9 ± 0.4% for cherry and 5.4 ± 0.4% for banana. Acetification showed impact on aroma volatiles, mainly related to oxidative reactions. Minor volatiles associated with varietal aroma were identified, monoterpenic alcohols in orange vinegar, esters in banana vinegar, C13-norisoprenoids in cherry vinegar and lactones in mango vinegar, indicating fruit vinegars differentiated sensory quality. Total antioxidant activity analysis by FRAP, revealed fruit vinegars potential to preserve and deliver fruit functional properties. Antioxidant activity of fruit vinegars, expressed as equivalents of Fe2SO4, was of 11.0 ± 1.67 mmol L1 for orange, 4.8 ± 0.5 mmol L1 for mango, 18.6 ± 2.33 mmol L1 for cherry and 3.7 ± 0.3 mmol L1 for banana. Therefore, fruit vinegars presented antioxidant activity close to the reported for the corresponding fruit, and between 8 and 40 folds higher than the one found in commercial cider vinegar, demonstrating the high functional potential of these novel vinegar products.Authors would like to acknowledge the financial funding of: FruitVinegarDRINK QREN Project (Ref. 23209), Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER and the FCT Strategic Project Pest OE/EQB/LA0023/2013. Authors would also like to acknowledge the participation of Mendes Goncalves S.A. and Frulact S.A. staff, for the active input, which led to the work basis and rationale.info:eu-repo/semantics/publishedVersio

    Application of the MEGNO technique to the dynamics of Jovian irregular satellites

    Full text link
    We apply the MEGNO (Mean Exponential Growth of Nearby Orbits) technique to the dynamics of Jovian irregular satellites. We demonstrate the efficiency of applying the MEGNO indicator to generate a mapping of relevant phase-space regions occupied by observed jovian irregular satellites. The construction of MEGNO maps of the Jovian phase-space region within its Hill-sphere is addressed and the obtained results are compared with previous studies regarding the dynamical stability of irregular satellites. Since this is the first time the MEGNO technique is applied to study the dynamics of irregular satellites we provide a review of the MEGNO theory. We consider the elliptic restricted three-body problem in which Jupiter is orbited by a massless test satellite subject to solar gravitational perturbations. The equations of motion of the system are integrated numerically and the MEGNO indicator computed from the systems variational equations. An unprecedented large set of initial conditions are studied to generate the MEGNO maps. The chaotic nature of initial conditions are demonstrated by studying a quasi-periodic orbit and a chaotic orbit. As a result we establish the existence of several high-order mean-motion resonances detected for retrograde orbits along with other interesting dynamical features. The computed MEGNO maps allows to qualitatively differentiate between chaotic and quasi-periodic regions of the irregular satellite phase-space given only a relatively short integration time. By comparing with previous published results we can establish a correlation between chaotic regions and corresponding regions of orbital instability.Comment: 15 pages, 13 figures, 2 tables, submitted to MNRA

    Impact of Leaf Removal, Applied Before and After Flowering, on Anthocyanin, Tannin, and Methoxypyrazine Concentrations in ‘Merlot’ (Vitis viniferaL.) Grapes and Wines

    Get PDF
    7siThe development and accumulation of secondary metabolites in grapes determine wine color, taste, and aroma. This study aimed to investigate the effect of leaf removal before flowering, a practice recently introduced to reduce cluster compactness and Botrytis rot, on anthocyanin, tannin, and methoxypyrazine concentrations in Merlot' grapes and wines. Leaf removal before flowering was compared with leaf removal after flowering and an untreated control. No effects on tannin and anthocyanin concentrations in grapes were observed. Both treatments reduced levels of 3-isobutyl-2-methoxypyrazine (IBMP) in the grapes and the derived wines, although the after-flowering treatment did so to a greater degree in the fruit specifically. Leaf removal before flowering can be used to reduce cluster compactness, Botrytis rot, and grape and wine IBMP concentration and to improve wine color intensity but at the expense of cluster weight and vine yield. Leaf removal after flowering accomplishes essentially the same results without loss of yield. © 2016 American Chemical Society.reservedmixedSivilotti, Paolo; Herrera, Jose Carlos; Lisjak, Klemen; Baša Česnik, Helena; Sabbatini, Paolo; Peterlunger, Enrico; Castellarin, Simone DiegoSivilotti, Paolo; Herrera, Jose Carlos; Lisjak, Klemen; Baša Česnik, Helena; Sabbatini, Paolo; Peterlunger, Enrico; Castellarin, Simone Dieg

    Interaction of free-floating planets with a star-planet pair

    Full text link
    The recent discovery of free-floating planets and their theoretical interpretation as celestial bodies, either condensed independently or ejected from parent stars in tight clusters, introduced an intriguing possibility. Namely, that some exoplanets are not condensed from the protoplanetary disk of their parent star. In this novel scenario a free-floating planet interacts with an already existing planetary system, created in a tight cluster, and is captured as a new planet. In the present work we study this interaction process by integrating trajectories of planet-sized bodies, which encounter a binary system consisting of a Jupiter-sized planet revolving around a Sun-like star. To simplify the problem we assume coplanar orbits for the bound and the free-floating planet and an initially parabolic orbit for the free-floating planet. By calculating the uncertainty exponent, a quantity that measures the dependence of the final state of the system on small changes of the initial conditions, we show that the interaction process is a fractal classical scattering. The uncertainty exponent is in the range (0.2-0.3) and is a decreasing function of time. In this way we see that the statistical approach we follow to tackle the problem is justified. The possible final outcomes of this interaction are only four, namely flyby, planet exchange, capture or disruption. We give the probability of each outcome as a function of the incoming planet's mass. We find that the probability of exchange or capture (in prograde as well as retrograde orbits and for very long times) is non-negligible, a fact that might explain the possible future observations of planetary systems with orbits that are either retrograde or tight and highly eccentric.Comment: 19 pages, 12 figure

    Are retrograde resonances possible in multi-planet systems?

    Get PDF
    Most multi-planetary systems are characterized by hot-Jupiters close to their central star, moving on eccentric orbits. From a dynamical point of view, compact multi-planetary systems form a specific class of the general N-body problem (where N>=3). Moreover, extrasolar planets are found in prograde orbits about their host star, and often in mean motion resonances (MMR). In a first step, we study theoretically a new stabilizing mechanism suitable for compact two-planet systems. This mechanism involves counter-revolving orbits forming a retrograde MMR. In a second step, we investigate the feasibility of planetary systems hosting counter-revolving planets. Dynamical stability, observations, and formation processes of these systems are analyzed and discussed. To characterize the dynamical behavior of multi-dimensional planetary systems, we apply our technique of global dynamics analysis based on the MEGNO indicator (Mean Exponential Growth factor of Nearby Orbits) that provides the fine structure of the phase space. In a few cases of possible counter-revolving configurations, we carry out new fits to the observations using the Pikaia genetic algorithm. A statistical study of the stability in the neighborhood of different observed, planetary-systems is completed using a Monte-Carlo method. We analyse the observational data for the HD73526 planetary system and find that counter-revolving configurations may be consistent with the observational data. We highlight the fine and characteristic structure of retrograde MMRs. We demonstrate that retrograde resonances open a family of stabilizing mechanisms involving new apsidal precession behaviors. Considering two possible formation mechanisms (free-floating planet and Slingshot model), we conclude that counter-revolving configurations are feasible.Comment: 8 pages, 2 tables, 7 figures, accepted to A&A (January 7, 2008
    corecore