408 research outputs found

    Visualisation and characterisation of flame radical emissions through intensified spectroscopic imaging

    Get PDF
    Combustion flames contain strong emissions from excited radical species produced by the combustion process. The monitoring and characterisation of such emissions is important for an in-depth understanding of fuel energy conversion and pollutant formation processes. In this paper, an approach combining emission spectroscopy with intensified digital imaging techniques is proposed for visualising and quantifying the radiative characteristics of free radicals of combustion flames. Recent advances in CCD technology, especially in EM image intensification, have made it possible to obtain high resolution emission images of isolated spectral emissions from particular flame radicals. These can be used to study emission intensity and distribution, with the aim of correlating combustion emission products with flame spectral emission patterns

    Bearings and Lubrication

    Get PDF
    Discussion Grou

    Point-loaded discs and blocks applicable to tensile testing of brittle materials

    Get PDF
    A method of numerically approximating the solutions of plane-stress or plane-strain elasticity problems with boundary conditions consisting of concentrated forces or distributed loads is presented herein. The effect of each concentrated force (commonly termed a point load) that acts on the boundary is represented by a Flamant solution. Usually, the combined effect of these Flamant solutions indicates the presence of distributed loadings or ‘residual stresses’ on some portions of the boundary that are not consistent with the actual boundary conditions. The negatives of these ‘residual stresses’ are used as stress boundary conditions in a singular integral method of numerical analysis that is applicable to plane elasticity problems involving distributed loadings on the boundaries. Since the method presented herein involves only stress boundary conditions, the solutions are valid for both plane stress and plane strain.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    Full text link
    Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases temperature and pressure inside the combustion chamber, which causes the auto-ignition of the rest of the unburned mixture. This second stage is characterized by a more pronounced rate of heat release and a faster propagation of the reactions through the combustion chamber. Moreover, the measured UV–Visible spectra show some differences in comparison with the other stages. The relative intensities in of spectra from different combustion radicals have also been related to the different combustion phases.The authors acknowledge that part of this work was performed in the frame of Project DUFUEL TRA2011-26359, funded by the Spanish Government. The authors also thank GM for technical assistance and its support in other parts of this work.Pastor Soriano, JV.; García Oliver, JM.; García Martínez, A.; Micó Reche, C.; Durret, R. (2013). A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy. 104:568-575. https://doi.org/10.1016/j.apenergy.2012.11.030S56857510

    Carotenoids and chlorophyll content in natural soap with addition of vegetative raw material

    Get PDF
    In the present study, we performed quantitative and qualitative determination of carotenoids and chlorophyll in five samples of natural soap with addition of vegetative raw material: Green tea, Chamerion angustifolium (L.) Holub, Trifolium pratense L., Alchemilla vulgaris L. and Urtica dioica L. There was developed the method of quantitative content of carotenoids and chlorophyll using spectrophotometry with analytical wavelength at 450 nm (carotenoids) and 667 nm (chlorophyll). Qualitative determination was carried out by the comparative TLC analysis. As mobile phases were used in the experiment following a mixed solvent of hexane-acetone (3: 1). Identification of carotenoids was carried out according to standard samples β -carotene and literature data

    Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    Get PDF
    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma
    corecore