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A method of numerically approximating the solutions of plane-stress or plane-strain elasticity problems with 
boundary conditions consisting of concentrated forces or distributed loads is presented herein. The effect of 
each concentrated force (commonly termed a point load) that acts on the boundary is represented by a Flamant 
solution. Usually, the combined effect of these Flamant solutions indicates the presence of distributed loadings 
or ‘residual stresses’ on some portions of the boundary that are not consistent with the actual boundary condi- 
tions. The negatives of these ‘residual stresses’ are used as stress boundary conditions in a singular integral 
method of numerical analysis that is applicable to plane elasticity problems involving distributed loadings on 
the boundaries. Since the method presented herein involves only stress boundary conditions, the solutions are 
valid for both plane stress and plane strain. 

The accuracy of this superposition method is demonstrated by consideration of a circular disc or cylinder 
subjected to diametrically opposed concentrated forces for which accuracy to within 0.2 per cent of the exact 
solution is obtained. Parametric analyses of rectangular and elliptical compression members subjected to point 
loads are presented. Results determined herein are found to compare relatively well with those determined in 
previous numerical and experimental investigations of specific cases. These results make possible the design 
and analysis of compression members used to evaluate the tensile fracture strength of brittle materials. 

1 INTRODUCTION 
PLANE-STRESS or plane-strain elasticity solutions for mem- 
bers subjected to concentrated forces at various locations 
on the boundary are often determined by superposition of 
elasticity solutions which predict the effect of the con- 
centrated forces and other solutions such that the stress 
boundary conditions for the member are satisfied. The 
effect of a concentrated force (commonly termed a point 
load) which acts on the boundary can be represented by a 
Flamant solution (I)*. The superposition of a Flamant 
solution for each point load that acts on the boundary 
usually results in the prediction of ‘residual stresses’ on 
some portions of the boundary that are, in reality, stress- 
free. An admissible solution must then be superimposed 
to form a composite solution such that the ‘residual 
stresses’ are cancelled and the stress boundary conditions 
of the problem are satisfied. For example, the complete 
solution for the circular disc or cylinder subjected to two 
diametrically opposed concentrated forces consists of the 
sum of the effects of two Flamant solutions and a hydro- 
static tensile stress, as is shown in detail in (I). An ad- 
missible function that will result in a superposed solution 
that satisfies the boundary conditions of the problem at 
hand is generally very complex and usually cannot be de- 
termined exactly. 

Recently, Appl and Koerner (2) presented a singular 
integral method of numerical analysis that is applicable to 
plane elasticity problems having stress boundary condi- 
tions. As presented in (2), the method is applicable to those 
problems involving distributed loads on the boundary. 

A method of numerically approximating the solutions of 
plane elasticity problems with stress boundary conditions 

The M S .  of this paper was received at the Institution of Mechanical 
Engineers on 8th June 1971 and accepted for publication on 28th 
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* References are given in the Appendix. 

consisting of point loads and/or distributed loads is de- 
veloped herein. Since the method presented involves only 
stress boundary conditions, the solutions are valid for 
either plane stress or plane strain. Each point load that 
acts on the boundary can be represented by a Flamant 
solution (I). The combined effect of these Flamant solu- 
tions will, in general, indicate the presence of distributed 
loadings or ‘residual stresses’ on other portions of the 
boundary that are not consistent with the actual boundary 
conditions. The negatives of these ‘residual stresses’ can 
then be used as stress boundary conditions in the singular 
integral method (2). The superposition of several Flamant 
solutions and the results of the singular integral method of 
numerical analysis give an approximate solution of plane 
elasticity problems with point loads acting on the bound- 
ary. This superposition method is exact in that the point 
loads acting on the boundary are represented by Flamant 
solutions. The superposition method is approximate in 
that the singular integral method of numerical analysis is 
a boundary-collocation method which satisfies the bound- 
ary conditions only at discrete points on the boundary. 
Thus the superposition method exactly satisfies the 
boundary conditions at the points of application of point 
loads and satisfies the boundary conditions on the remain- 
ing portions of the boundary at discrete points. 

It is generally known that greater maximum tensile 
stresses for a given compressive load can be produced in 
non-circular blocks subjected to point loads than are pro- 
duced in the diametrically loaded circular disc. Various 
geometrical configurations have been considered analytic- 
ally by Goodier (3), Niedenfuhr, Leissa, and Lo (4), Gay- 
don (5), and Brisbane (6). The energy method used in (4) 
was so laborious that only three rectangular blocks were 
investigated. Niedenfuhr, Leissa, and Lo (4) used a point- 
matching technique to determine the stress distributions 
in a square block loaded by compressive point loads and 
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arrived at approximately the same results as in (3). 
Gaydon (5) used a series-solution boundary-collocation 
method in determining an approximate solution for a rect- 
angular block with a width/height ratio of 2. Excellent 
agreement between Gaydon's results and the present cal- 
culations is shown below. Using the complex-variable 
method, Brisbane (6) determined an infinite-series solu- 
tion for the general problem of an elliptical disc subjected 
to diametrically opposed point loads. 

The method developed herein was programmed for 
a digital computer and used to determine parametric 
analyses of rectangular compression blocks and elliptical 
discs. The results of these parametric analyses are found 
to compare well with specific cases previously presented 
and to determine more completely the effect of the geo- 
metrical parameters on the stress distributions in the 
various members. 

1.1 Notation 
2a 
2b 
C 
M 
N 

P 

Q 
Ri 

r 

Si 

t 

Width of member (see Fig. 2). 
Height of member (see Fig. 2). 
Contour of member. 
Point on the contour C. 
Number of boundary segments used to 

approximate the contour C. 
Magnitude of an actual point load, force 

per unit depth. 
Magnitudes of the step density functions 

for the ith boundary segment. 
Magnitudes of the step density func- 

tions at point M. 
Point inside contour C. 
Distance from the centre of the ith 

boundary segment to point Q (or M) 
(see Fig. 1). 

Distance from point of application of 
point load P to point M (or Q). 

Length of the ith boundary segment 
(see Fig. 1). 

Distance along boundary segment S,, 

Rectangular co-ordinate axes. 
Angle between r and the direction of P. 
Angle from x axis to R, (see Fig. 1). 
Poisson's ratio. 

-S,j2 < t < SJ2. 

annT(M), TntT(M) Actual normal and shear stresses at 
point M (or Q). 

unnl(M), 7,,t1(M) Normal- and shear-stress components 
at point M (or Q) due to fictitious 
distributed loads, see equations (1) 
and (2) or (3) and (4). 

unn2(M), 7,,2(M) Normal- and shear-stress components 
at point M (or Q) due to actual point 
loads, see equations ( 5 )  and (6). 

Normal and shear stresses at point M 
(or Q) due to a fictitious point load 
acting in the x direction at point t in 
segment Si. 

Normal and shear stresses at point M 
(or Q) due to a fictitious load acting 
in they direction at point t in segment 
Si . 

Angle from r to direction n at point M 
(01 Q). 

Only  7,t1 

"712, Tnt2 

c 

ct Angle from R, to direction n at point 
M (or Q) (see Fig. 1). 

k Angle from x axis to the outward 
directed normal of boundary segment 
S, (see Fig. 1). 

Angle from the x axis to the outward 
directed normal of the contour at 
point M. 

*M 

2 METHOD OF ANALYSIS 
The boundary or contour of the member of interest is 
approximated by N straight-line segments. This contour 
C is assumed to be scribed in the interior of an infinite 
plate. Each line segment is loaded by a fictitious distributed 
loading which has an arbitrary magnitude and is directed 
in the x direction and by a similar fictitious loading in the 
y direction. Each of these fictitious distributed loadings 
causes an effect at other points in the infinite plate. The 
effect at a point M on the contour C can be expressed as: 

2ir 
Unn'(M) = - [pl(M) COS (CIM+p2(M) sin #MI 

(1-v) 
s 12 +,z" t = l  [P1i/:112 Sl/2 un1 dt+p2i/ - s112 un2 at] (1) 

N 

7 n t l  dt+P2i /'I" 7 n t 2  dt] (2) + i =  z: 1 [Ai /:;;2 - sr12 

or for a point Q inside the contour as: 
N 

unn'(Q) = 2 [PI, /s"2 On1 dt+PZi 

N s112 

7 n t ' ( Q >  = 2 [PI[ 1 -s112 7 n t l  dt+P2i / s i 1 2  -&I2 7nt2  dt] 

o n 2  at] (3) 
i=  1 -Sr/2 -SIP 

i=  1 

. . . (4) 

unl, un2, T ~ ~ ~ ,  and Tnt2 have been developed from Airy 
stress functions and represent the effects of fictitious point 
loads acting in the x and y directions. These expressions 
are presented in detail in (2). 

The effect at point A4 due to an actual point load acting 
on the boundary of the region of interest is represented by 
a Flamant solution (I) as 

2P cos u cos2 l$ 

unn2(M) = - - ( 5 )  irr 

The actual stress boundary conditions at point M (or Q) 
can be expressed as the sum of the effects at point M (or Q) 
of the fictitious distributed loads and of the actual external 
point loads. That is: 

unnT(M) = unn'(M)+2unn2(M) * * (7) 
7 n t T  (M) = 7nt1(M)+2 7n,2(M) - * (8) 

where the summation in equations (7) and (8) indicates that 
the effect of each external point load is included. 

The terms outside the summation sign on the right- 
hand side of equations (1) and (2) represent the discon- 
tinuities in stress caused by the application of a fictitious 
distributed load along the boundary segment containing 
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point M. This discontinuity is not present when an in- 
terior point Q is considered, as shown by equations (3) and 

Defining the line from the centre of segment S, to 
point Q as R,, the angle from the x axis to the outward 
directed normal of segment S, as #,, the angle from the 
x axis to R, as O,, and the angle from R, to direction n at 
Q (or M) as +,, we can express the results of the integra- 
tions indicated in equations (1)-(4) in terms of R,, O,, #,, 
and 4, for the general segment S,. These geometrical 
variables are illustrated in Fig. 1. The solutions of the 
integrals in equations (1)-(4) have been presented in (2). 

In the exact formulation of the problem, the summation 
signs are replaced by integrals over the contour in equa- 
tions (1)-(4). Massonnet (7) has suggested iteration of the 
exact singular integral equations as a method of obtaining 
a solution. Lo, Niedenfuhr, and Leissa (8) approximated 
the continuous density function by a.step density function 
in their development of a singular integral method applic- 
able to torsion and plate problems. By approximating the 
density function by a step function, the integrals over the 
contour can be replaced by summations of integrals over 
line segments. Appl and Koerner (2) used a similar man- 
ner of approximating the two continuous density functions 
by step functions in their work on'plane elasticity prob- 
lems. 

In order to apply the superposition method to a specific 
problem, the boundary is first approximated by N straight- 
line segments. The actual stress boundary conditions are 
prescribed at the centre of each of the N segments. These 
boundary conditions are the unnT(M) and T,,~(M) of a set 
of 2N simultaneous equations arising from the use of 
equations (7) and (8) at each of the N points. Once the N 
segments have been defined, the integrals indicated in 

(4). 

n 

Fig. 1. Definition of co-ordinate system and geometrical 
variables for a general boundary segment 

equations (1) and (2) can be evaluated and are coefficients 
of the step density functions. The step density functions 
p, , ,p2 ,  are the only unknown quantities in the set of 2N 
simultaneous equations. After the step density functions 
have been evaluated, the stresses at other points and 
orientations on or interior to the contour can be evaluated 
by using equations (1) and (2) or (3) and (4) respectively 
in equations (7) and (8). 

It should be noted that equations (1)-(4) contain singul- 
arity points which occur at the ends of the boundary 
segments Si. However, the equations are well behaved at 
the mid-points of the segments and at all points inside the 
contour C. If all stress calculations for points on the 
boundary are made at the mid-points of the boundary seg- 
ments, no difficulties are encountered. 

This singular integral superposition method of numeri- 
cal approximation is ideal for computer application be- 
cause of the large number of repetitive calculations which 
must be made. A computer programme has been de- 
veloped which takes as input the geometry, boundary 
conditions, and the locations where the stresses are de- 
sired. From the geometry and boundary conditions, co- 
efficients of the set of simultaneous equations are com- 
puted by use of equations (1) and (2) in equations (7) and 
(8). This set of equations is solved for the magnitudes of 
the step density functions by inverting the matrix of co- 
efficients. T o  find the stresses at specified locations, these 
step density functions are substituted back into equations 
(7) and (8). Equations (1) and (2) are used for points on 
the boundary and equations (3) and (4) for interior points. 

3 ANALYSIS OF RESULTS 
The singular integral superposition method of numerical 
analysis developed herein is used to make parametric 
analyses of the stress distributions in rectangular and 
elliptical members subjected to compressive point loads. 
The various geometrical shapes and the parameters used 
to describe these shapes and the loadings considered are 
shown in Fig. 2. All solutions were found to be inde- 
pendent of Poisson's ratio. 

The stress distribution in a circular disc or cylinder sub- 
jected to diametrically opposed compressive concentrated 
forces was calculated in order to obtain a direct comparison 
between the results of the numerical analysis and the exact 
solution (I). For the determination of the numerical solu- 
tion 192 segments were used to describe the boundary. 
The results were relatively insensitive to the placement of 
boundary points. T o  determine the effect of the number 
of segments, 160 were used for the solution of this problem. 
Since these two numerical analyses differed by less than 
1 per cent it was concluded that 192 segments adequately 
define the boundary and that accurate results are obtained. 
As shown in Fig. 2, the diameter of the disc is 26 and the 
external compressive point load per unit depth is P. The 
x-y co-ordinate system is defined in Fig. 2 with its origin 
at the centre of the disc. The exact solution (I) predicts a 
uniform tensile stress in the x direction at all points along 
they  axis and a compressive-stress distribution in they  
direction at points along the x axis that is a maximum at 
the origin and decreases to zero at the outer boundary. The 
exact solution is plotted as the solid lines in Fig. 3 while 
the data points represent the results of the numerical 
analysis. The maximum difference between the exact solu- 
tion and the results of the numerical analysis is 0.2 per cent. 
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I Present 
calculations 

2 1  I I 

m m W 

a 

0 
a a 
l- 

3 
x / b  or y/b 

Fig. 3. Stress distributions in a circular disc subjected to 
diametrically opposed compressive point loads 

While the principal stresses at the origin are of interest, 
the maximum value of the tensile stress ox is found to 
occur in every case at y = f b except the circular disc where 
the tensile stress is the same at all points along the y axis. 
Tensile-stress distributions along the y axis are shown in 
Fig. 4 for two elliptical discs and a circular disc. Fig. 5 and 
Table 2 show the maximum tensile stress in elliptical 
discs as a function of the width/height ratio. This para- 
metric analysis indicates a relative minimum at a/b  equal 
to 1 (a circular disc) and reveals that as the width/height 
ratio approaches infinity, the maximum tensile stress 
approaches asymptotically the result for an infinite strip 
subjected to point loads as recorded in (3). 

An analysis of rectangular blocks subjected to point 
loads is made, the width/height ratio of the block being 
used as a parameter. For the solutions 192 segments were 
used to describe the boundary. The solutions were rela- 
tively insensitive to the placement of boundary segments 
but some concentration of segments in the neighbourhood 
of the sharp corners was necessary to limit the ‘corner 
effect’ that has been discussed by Massonnet (7). The co- 
ordinate system and geometrical parameters are defined in 

I I 
tp 

Depth of all members is one unit. 

Fig. 2. Description and definitions for compression members 
considered 

An analysis of elliptical discs subjected to point loads is 
made, the width/height ratio being used as a parameter. 
The co-ordinate system and geometrical parameters are 
defined in Fig. 2. 192 segments were used to define the 
boundary. The principal stresses at the origin of several 
elliptical discs were determined and are tabulated in 
Table 1. The results presented by Brisbane (6) are also 
shown in Table 1. Despite the inherent error incurred in 
reading Brisbane’s results from a graph, the results are in 
excellent agreement, differences being less than 2 per cent 
at those points where direct comparison is possible. These 
results show that the tensile stress at the origin as a func- 
tion of the width/height ratio is a maximum for a circular 
disc. 

Table 1. Comparison of principal stresses at the origins of elliptical discs subjected to point loads 

Width/height ratio 
a/b (see Fig. 2) Compressive stress -0y 

Pl(2b) 
Tensile stress 2 

P/(2b) 

Numerical* Photoelastic* Present 
calculations 

Numerical* ~ Photoelastic* 

0.50 
0.6667 
0.75 
0.90 
1 .oo 
1.10 
1.25 
1.50 
1.75 
2.00 
3.00 
4.00 
a, 

0.34 
0.5 1 - 
- 

0.64 - 
- 

0.58 

0.53 
- 
- - 

0.49$ 

0.36 
0.54 

0.345 
0.51t 
0.574 
0.626 
0.632 
0.627 
0.608 
0.574 
0.549 
0.532 
0-502 
0.490 - 

2.26 
1.95 

2.247 

1.934 
1.913 
1.912 
1.911 
1.907 
1.894 
1.881 
1.872 
1.854 
1.848 

2.00t 

- 

* Values read from Fig. 3 of (6). 
t Values graphically interpolated. 
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0.654 
0.343 * 

* 

Table 2. Location and magnitude of various levels of tensile stress on the y axis of elliptical discs 

0.959 
0.788 - - 
- 

Widthlheight ratio 
alb 

0.341 
0.375 
0.402 
0.420 
0.453 
0.464 

Maximum tensile stress 

1.000 
1.000 
1 .ooo 
1.000 
1.000 
1.000 

90 per cent of maximum 
tensile stress 

0.378 
0.408 
0.418 

80 per cent of maximum 
tensile stress 

0.869 
0.903 
0.913 

95 per cent of maximum 
tensile stress 

90 per cent of maximum 
tensile stress 

80 per cent of maximum 
tensile stress 

0.25 
0.50 
0.75 
0.90 
1.00 
1.25 
1.50 
2.00 
3.00 

Magnitude 
"s 

iq 
1.150 
0.577 
0.403 
0.387 
0.396 
0.437 
0.467 
0.485 
0.486 

0.979 
0.950 
0.920 
0.916 
0.916 

0.920 
0.462 
0.322 
0.309 
0.316 

1.000 
1.000 
1.000 

. ~- 
0.383 
0.367 
0.376 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 

0.415 
0.443 
0.461 
0.461 

0.922 
0.922 
0.922 

0.349 
0.373 
0.388 

Magnitude 
0.950, 

Plb 
- 

Location 
f Y l b  

Location 
f Y l b  

Magnitude 
0.800, 

Plb 
- 

0.581 
0.304 * 

* 
* 

0.300 
0.321 
0.336 
0.362 
0.371 

0.900, 

0.50 
0.75 
0.90 
1.00 
1.10 
1.25 
1.50 

0.726 I 1.000 
0.381 1 .ooo 

0.690 
0.362 * 

* 
0.324 
0.356 
0.381 
0.399 
0.430 
0.441 

0.980 
0.900 - - - 
0.738 
0.894 
0.925 
0.938 
0.953 
0.958 

0.911 
0.450 - 0.326 1.000 

1.000 
0.318 
0.323 

- 
- - 
0400 
0.63 1 
0.703 
0.783 
0.803 

0.307 0.250 
0.338 0.769 
0.361 I 0.844 1.75 

2.00 
3.00 
4.00 

Tensile stress at all points on the y axis is greater than the stress level indicated. 
t Tensile stress is the same at all points on they, axis. 

Table 3. Location and magnitude of various levels of tensile stress on the y axis of rectangular blocks 

Width/height ratio ! Maximum tensile stress I 95 per cent of maximum 
I tensile stress 

Location 1 Magnitude Location 
f Y l b  

Magnitude 
0.900, - 

Plb 

Location 
f Y l b  

1.000 1.093 
1 .ooo I 0548 

0.991 
0.977 
0.964 
0.963 
0.963 
0.963 
0.963 
0.963 
0.963 

1.035 
0.519 
0.363 
0.348 
0.356 
0.393 
0.420 
0.436 , 
0.437 

0.940 
0.864 
0.738 
0.713 
0.763 
0.809 
0.822 
0.822 
0.822 

Fig. 2. Tensile-stress distributions along the y axis are 
shown in Fig. 6 for three specific width/height ratios. 
Fig. 5 and Table 3 show the maximum tensile stress in 
rectangular blocks as a function of the width/height ratio. 
As shown in Fig. 5, the maximum tensile stress in rect- 
angular blocks as a function of a / b  assumes a relative 
minimum when a / b  = 0.9 and asymptotically approaches 
the limiting value for an infinitely wide block as a / b  be- 
comes large. 

The maximum tensile stresses are compared with those 
determined by Goodier (3) in Table 4. These tensile-stress 
magnitudes agree relatively well; a maximum difference of 
approximately 6 per cent is indicated for a square block. 
The tensile-stress distributions currently determined are 
very similar to those determined by Goodier (3) for 
a/b  = 1 and 2. However, the tensile-stress distribution 
shown in Fig. 6 for a / b  = 0.5 is quite different from that 

1 .( 

0.f 

0 6  

3 
A 

0 4  

0.2 

0 

--r 
alb = 

I Table 4.  Comparison of maximum tensile stresses in rect- 
angular blocks subjected to point loads 

I Width/height ratio (see Fig. 2) ~ Maximum tensile stress 5 
Plb 

1 Goodier (3) I Present calculations 0.2 C 0.6 0 
TENSILE STRESS uxb/P 

Fig. 4.  Tensile-stress distributions on the y axis in three 
elliptical discs subjected to diametrically opposed com- 
pressive point loads 

0.50 0.58 
1 .oo 0.42 
2-00 1 0.48 

0.577 
0.396 
0.485 
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Fig. 5.  

olb 

Parametric analysis of maximum tensile stresses on t h e y  axis of compression members 

0.8 

0.6 

9 4 

0.4 

0.2 

OO 0.2 
TENSILE STRESS uxb/P 

Fig. 6. Tensile-stress distributions on the y axis in three 
rectangular blocks subjected to compressive point loads 

in (3). The distribution of tensile stress in (3) shows 
a maximum value at y / b  = 0.8 and a lesser value 
at y / b  = f l .  The present analysis indicates that the 
maximum tensile stress on the y axis always occurs when 

Results of a photoelastic analysis of a rectangular block 
subjected to point loads have been published as a portion 
of a paper by Phillips and Mantei (9). The specific member 
investigated had a widthlheight ratio of 0.305 as referred 
to Fig. 2. Experimental data are shown for the tensile 
stress ux acting on the line of action of the external loads, 

y / b  = f l .  

the y axis. In  the vicinity of the point loads the experi- 
mental data in (9) are incomplete and the curve showing 
tensile stress as a function of location along the y axis re- 
presents an extrapolation which, as Phillips and Mantei (9) 
point out, is uncertain. 

A comparison is shown in Fig. 7 between the experi- 
mental data as read from Fig. 4 of (9) and the results of a 
numerical analysis of this problem as determined by the 
method presented here. The agreement between experi- 
mental data and the numerical analysis is reasonably good 

! 02 0 
For o/b=0,305 1 

- Present calculations 
x Phillips and Mantei  

(Photoelastic d a t a )  

0 025 0 50 0.75 1.0 
TENSILE STRESS g b/P 

Fig. 7. Comparison of tensile stresses on the y axis for a 
rectangular block with alb = 0.305 and subjected to 
compressive point loads 
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0.278 
0,317 
0.382 

Table 5. Comparison of stresses in a rectangular block with 
a / b  = 2 and subjected to point loads 

~~ ~ 

0.275 
0.313 
0.378 

Y l b  x / a  (see Fig. 2) Tensile stress 2 
Plb 

0 
0.2 
0.4 
0.6 
0.8 
0.9 
1.0 

0.251 0.249 
0.257 1 0.255 

0.425 
- aJ I 0.485 

I 1 Compressive stress -OY 
I Plb 

0.923 0.925 0 0 
0 

throughout the range of the experimental data. The pre- 
sent calculations for this specific case indicate a distribu- 
tion of tensile stress in the vicinity of the points of load 
application which is more consistent with the trend of the 
results in (3), (5), and (6) and of other cases presented 
herein than is the extrapolation shown in (9). 

Table 5 gives a comparison of the solutions for a block 
with a/b  = 2.0 as determined in (5 )  and in the present 
work. With the exception of one point, the solutions 
differ by 1 per cent or less. At the point x/a = 0 andy/b = 
1.0, Gaydon indicates a tensile stress of infinity, while the 
present calculations indicate a tensile stress of 0.485 which 
is consistent with an asymptotic approach to the solution 
for an infinitely wide block (5 )  as shown in Fig. 5. 

The redistribution of stress according to Saint-Venant’s 
principle is shown in Fig. 8 for the rectangular block with 
a/b = 0.5 and subjected to point loads. At a distance equal 
to one width away from the point load, the compressive- 
stress distribution is found to differ from a uniform stress 
distribution by 6.7 per cent. 

Some materials are ‘flaw sensitive’. For an accurate de- 
termination of the fracture strength of this type of 
material it is imperative that a relatively large volume of 
material be subjected to a high level of tensile stress. 
Tables 2 and 3 show the location along the y axis of the 
95 per cent level of maximum tensile stress, the 90 per cent 
level, and the 80 per cent level for various elliptical discs 
and rectangular blocks. Since the maximum tensile 
stresses in these members occur when y/b = f l .0 ,  the 
values of y / b  given for the various stress levels indicate the 
percentage of the y axis subjected to tensile stresses less 
than the level indicated. For example, Table 3 shows that 
in the square block 3.7 per cent of the y axis is subjected 
to a tensile stress of 95 per cent or more of the maximum 
tensile stress, 8.4 per cent is subjected to a tensile stress of 
90 per cent or more of the maximum, and 23.7 per cent is 
subjected to a tensile stress of 80 per cent or more of the 
maximum. The distribution in the square block may be 
compared with the distribution in ellipses for which 
0.9 < a/b < 1.1, where the entire y ax is  is subjected to 
tensile stresses greater than 95 per cent of the maximum 
tensile stress. 

While these stress distributions along they axis are not 
sufficient to determine absolute volumes of highly stressed 
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Fig. 8. Compressive-stress distributions in a rectangular block 
with a / b  = 0.5 and subjected to compressive point loads 

material, they do give an indication as to which geometri- 
cal shapes are best for experimental tests with ‘flaw 
sensitive’ material. It is apparent from Tables 2 and 3 that 
only the elliptical discs with 0.9 < a / b  < 1-1 have the 
entirey axis subjected to 95 per cent or more of the maxi- 
mum stress. 

While the elliptical discs in the range of 0.9 < a/b  < 1.1 
have the most uniform tensile-stress distributions along 
the y axis, they also exhibit the lowest magnitudes of 
maximum tensile stress as shown in Tables 2 and 3. If it is 
desired to produce the greatest values of tensile stress for 
a given magnitude of applied load, it is apparent that the 
circular disc is not a good choice. It may also be observed 
that generally the maximum tensile stresses change very 
rapidly for values of a / b  less than 1.0. Accurate correlation 
between applied load and maximum tensile stress will 
thus be highly dependent on an accurate determination of 
the parameter a / b  for a/b  less than 1.0. 

4 CONCLUSIONS 
The superposition method developed in this paper is 
applicable to plane elasticity problems that have con- 
centrated forces acting on the boundaries. The solutions 
are equally valid for plane stress or plane strain. In the 
superposition method, the effects of concentrated forces 
(point loads) are represented exactly by use of Flamant 
solutions and a singular integral method of numerical 
analysis is used to satisfy the boundary conditions at dis- 
crete points on the remainder of the boundary. The 
accuracy of the method is illustrated by comparing the 
numerical analysis with the exact solution for a circular 
disc subjected to diametrically opposed point loads and with 
previous solutions for specific cases. The versatility of the 
method is indicated by the range of problems considered. 

Parametric analyses of rectangular blocks and elliptical 
discs subjected to point loads as functions of the width/ 
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height ratio are presented. The results compare well with 
solutions of specific cases previously investigated. With 
the results of these parametric analyses, an accuracte cor- 
relation between external compressive loads and the 
maximum tensile stress in variously proportioned mem- 
bers is possible. With these correlations, the relation 
between external compressive load and tensile fracture 
strength of brittle materials is available for use in analysing 
the results of indirect testing of members of various shapes. 
An indication of the relative volume of material that is 
subjected to high tensile stresses is presented as a function 
of the width/height ratio of the various members for use in 
designing members used to determine the fracture 
strength of brittle materials that are ‘flaw sensitive’. 

For brittle materials that are ‘flaw sensitive’, an elliptical 
disc with a width/height ratio between 0.9 and 1-1  should 
be used to ensure that the entire cross-section is subjected 
to tensile stresses which are greater than 95 per cent of the 
maximum tensile stress. For brittle materials that are not 
particularly ‘flaw sensitive’, it may be desirable to produce 
the greatest possible tensile stress for a given applied load. 
Greater maximum tensile stresses for a given applied 
load can be produced in either elliptical or rectangular 
members which have width/height ratios either consider- 
ably less or greater than 1.0. 
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