278 research outputs found

    What are the challenges facing the table egg industry in the next decades and what can be done to address them?

    Get PDF
    International audienceThere has been a strong consumer demand to take welfare into account in animal production, including table eggs. This is particularly true in Europe and North America but increasingly around the world. We review the main demands that are facing the egg industry driven by economic, societal and sustainability goals. We describe solutions already delivered by research and those that will be needed for the future. Already table egg consumption patterns have seen a major shift from cage to non-cage production systems because of societal pressures. These often feature free-range and organic production. These changes likely signal the future direction for the layer sector with the acceleration of the conversion of cage to barn and aviary systems with outdoor access. This can come with unintended consequences from bone fracture to increased disease exposure, all requiring solutions. In the near future, the laying period of hens will be routinely extended to improve the economics and environmental footprint of production. Many flocks already produce close to 500 eggs per hens in a lifetime, reducing the number of replacement layers and improving the economics and sustainability. It will be a challenge for scientists to optimize the genetics and the production systems to maintain the health of these hens. A major ethical issue for the egg industry is the culling of male day-old chicks of layer breeds as the meat of the males cannot be easily marketed. Much research has and will be devoted to alternatives. Another solution is elimination of male embryos prior to hatching by in ovo sexing approaches. The race to find a sustainable solution to early stage sex determination is on. Methods based on sex chromosomes, sexually dimorphic compounds and spectral properties of eggs containing male or female embryos, are being researched and are reviewed in this article. Other proposed solutions include the use of dual-purpose strains, where the males are bred to produce meat and the females to produce eggs. The dual-purpose strains are less efficient and do not compete economically in the meat or egg market; however, as consumer awareness increases viable markets are emerging. These priorities are the response to economic, environmental, ethical and consumer pressures that are already having a strong impact on the egg industry. They will continue to evolve in the next decade and if supported by a strong research and development effort, a more efficient and ethical egg-laying industry should emerge

    Understanding avian egg cuticle formation in the oviduct; a study of its origin and deposition

    Get PDF
    The cuticle is a unique invisible oviduct secretion that protects avian eggs from bacterial penetration through gas exchange pores. Despite its importance, experimental evidence is lacking for where, when, and what is responsible for its deposition. By using knowledge about the ovulatory cycle and oviposition, we have manipulated cuticle deposition to obtain evidence on these key points. Cuticle deposition was measured using staining and spectrophotometry. Experimental evidence supports the location of cuticle deposition to be the shell gland pouch (uterus), not the vagina, and the time of deposition to be within the final hour before oviposition. Oviposition induced by arginine vasotocin or prostaglandin, the penultimate and ultimate factors for the induction of oviposition, produces an egg with no cuticle; therefore, these factors are not responsible for cuticle secretion. Conversely, oviposition induced by GNRH, which mimics the normal events of ovulation and oviposition, results in a normal cuticle. There is no evidence that cuticle deposition differs at the end of a clutch and, therefore, there is no evidence that the ovulatory surge of progesterone affects cuticle deposition. Overall, the results demonstrate that the cuticle is a specific secretion and is not merely an extension of the organic matrix of the shell. Cuticle deposition was found to be reduced by an environmental stressor, and there is no codependence of the deposition of pigment and cuticle. Defining the basic facts surrounding cuticle deposition will help reduce contamination of hen's eggs and increase understanding of the strategies birds use to protect their eggs

    Neurochemical Characterization of Body Weight-Regulating Leptin Receptor Neurons in the Nucleus of the Solitary Tract

    Get PDF
    The action of peripherally released leptin at long-form leptin receptors (LepRb) within the brain represents a fundamental axis in the regulation of energy homeostasis and body weight. Efforts to delineate the neuronal mediators of leptin action have recently focused on extrahypothalamic populations and have revealed that leptin action within the nucleus of the solitary tract (NTS) is critical for normal appetite and body weight regulation. To elucidate the neuronal circuits that mediate leptin action within the NTS, we employed multiple transgenic reporter lines to characterize the neurochemical identity of LepRb-expressing NTS neurons. LepRb expression was not detected in energy balance-associated NTS neurons that express cocaine- and amphetamine-regulated transcript, brain-derived neurotrophic factor, neuropeptide Y, nesfatin, catecholamines, γ-aminobutyric acid, prolactin-releasing peptide, or nitric oxide synthase. The population of LepRb-expressing NTS neurons was comprised of subpopulations marked by a proopiomelanocortin-enhanced green fluorescent protein (EGFP) transgene and distinct populations that express proglucagon and/or cholecystokinin. The significance of leptin action on these three populations of NTS neurons was assessed in leptin-deficient Ob/Ob mice, revealing increased NTS proglucagon and cholecystokinin, but not proopiomelanocortin, expression. These data provide new insight into the appetitive brainstem circuits engaged by leptin

    Endogenous Renal Adiponectin Drives Gluconeogenesis Through Enhancing Pyruvate and Fatty Acid Utilization

    Get PDF
    Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis

    Genetic dissection of an amygdala microcircuit that gates conditioned fear

    Get PDF
    The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ^+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ^− neurons in CEl. Electrical silencing of PKC-δ^+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called Cel_(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing

    Normal Leptin Expression, Lower Adipogenic Ability, Decreased Leptin Receptor and Hyposensitivity to Leptin in Adolescent Idiopathic Scoliosis

    Get PDF
    Leptin has been suggested to play a role in the etiology of Adolescent Idiopathic Scoliosis (AIS), however, the leptin levels in AIS girls are still a discrepancy, and no in vitro study of leptin in AIS is reported. We took a series of case-control studies, trying to understand whether Leptin gene polymorphisms are involved in the etiology of the AIS or the change in leptin level is a secondary event, to assess the level of leptin receptor, and to evaluate the differences of response to leptin between AIS cases and controls. We screened all exons of Leptin gene in 45 cases and 45 controls and selected six tag SNPs to cover all the observed variations. Association analysis in 446 AIS patients and 550 healthy controls showed no association between the polymorphisms of Leptin gene and susceptibility/severity to AIS. Moreover, adipogenesis assay of bone mesenchymal stem cells (MSCs) suggested that the adipogenic ability of MSCs from AIS girls was lower than controls. After adjusting the differentiation rate, expressions of leptin and leptin receptor were similar between two groups. Meanwhile, osteogenesis assay of MSC showed the leptin level was similar after adjusting the differentiation rate, but the leptin receptor level was decreased in induced AIS osteoblasts. Immunocytochemistry and western blot analysis showed less leptin receptors expressed in AIS group. Furthermore, factorial designed studies with adipogenesis and osteogenesis revealed that the MSCs from patients have no response to leptin treatment. Our results suggested that Leptin gene variations are not associated with AIS and low serum leptin probably is a secondary outcome which may be related to the low capability of adipogenesis in AIS. The decreased leptin receptor levels may lead to the hyposensitivity to leptin. These findings implied that abnormal peripheral leptin signaling plays an important role in the pathological mechanism of AIS
    corecore